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1 Intel® HyperFlex FPGA Architecture Introduction

1 Intel® HyperFlex FPGA Architecture Introduction

This document describes design techniques to achieve maximum performance with the
Intel® HyperFlex™ FPGA architecture. This architecture supports new Hyper-Retiming,
Hyper-Pipelining, and Hyper-Optimization design techniques that enable the highest

clock frequencies for Intel Stratix® 10 devices.

"Registers everywhere” is a key innovation of the HyperFlex FPGA architecture. Stratix
10 devices pack bypassable Hyper-Registers into every routing segment in the device

core, and at all functional block inputs.

Figure 1. Registers Everywhere
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With Stratix 10 bypassable Hyper-Registers, the routing signal can travel through the
register first, or bypass the register direct to the multiplexer. One bit of the FPGA

configuration memory (CRAM) controls this multiplexer.

Figure 2. Bypassable Hyper-Registers
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The chapters in this document provide specific design guidelines, tool flows, and real
world examples to quickly take advantage of the HyperFlex FPGA architecture:

e RTL Design Guidelines—provides fundamental high-performance RTL design
techniques for Stratix 10 designs.

¢ Compiling Stratix 10 Designs—describes using the Intel Quartus® Prime Pro v17.1
Stratix 10 ES Editions to get the highest performance in Stratix 10 devices.

e HyperFlex Porting Guidelines—provides guidance for design migration to Stratix 10

devices.

e Design Example Walk-Through, Optimization Example, Appendices —demonstrate
performance improvement techniques using real design examples.

1.1 Stratix 10 Basic Design Concepts

Table 1. Glossary

Term/Phrase

Description

Critical Chain

Any design condition that prevents retiming of registers is the critical
chain. The limiting factor may include more than one register-to-register
path in a chain. The fyax of the critical chain and its associated clock
domain is limited by the average delay of a register-to-register path,
and quantization delays of indivisible circuit elements like routing wires.
Fast Forward compilation breaks critical chains.

Fast Forward Compilation

Generates design-specific timing closure recommendations, and forward-
looking performance results after removal of each timing restriction.

Hyper-Aware Design Flow

Design flow that enables the highest performance in Stratix 10 devices
through Hyper-Retiming, Hyper-Pipelining, Fast Forward compilation,
and Hyper-Optimization.

HyperFlex FPGA Architecture

Stratix 10 device core architecture that includes additional registers,
called Hyper-Registers, everywhere throughout the core fabric. Hyper-
Registers provide increased bandwidth and improved area and power
efficiency.

Hyper-Optimization

Design process that improves design performance through
implementation of key RTL changes recommended by Fast Forward
compilation, such as restructuring logic to use functionally equivalent
feed-forward or pre-compute paths, rather than long combinatorial
feedback paths.

Hyper-Pipelining

Design process that eliminates long routing delays by adding additional
pipeline stages in the interconnect between the ALM registers. This
technique allows the design to run at a faster clock frequency.

Hyper-Retiming

During Fast Forward compile, Hyper-Retiming speculatively removes
signals from registers to enable mobility in the netlist for retiming.

Multi-Corner Timing Analysis

Analysis of multiple "timing corner cases" to verify your design's voltage,
process, and temperature operating conditions. Fast-corner analysis
assumes best-case timing conditions.

Related Links

e Hyper-Retiming (Facilitate Register Movement) on page 11

e Hyper-Pipelining (Add Pipeline Registers) on page 25

e Hyper-Optimization (Optimize RTL) on page 28

Intel® Stratix® 10 High-Performance Design Handbook
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2 RTL Design Guidelines

This chapter describes RTL design techniques to achieve the highest clock rates
possible in Stratix 10 devices. The Stratix 10 architecture supports maximum clock
rates significantly higher than previous FPGA generations.

2.1 High-Speed Desigh Methodology

Migrating a design to the Stratix 10 architecture requires implementation of high-
speed design best practices to obtain the most benefit and preserve functionality. The
Stratix 10 high-speed design methodology produces latency-insensitive designs that
support additional pipeline stages, and avoid performance-limiting loops. The following
high-speed design best practices produce the most benefit for Stratix 10 designs:

e Set a high-speed target

e Experiment and iterate

e Compile design components individually
e Optimize design sub-modules

¢ Avoid broadcast signals

The following sections describe specific RTL design techniques that enable Hyper-
Retiming, Hyper-Pipelining, and Hyper-Optimization in the Quartus Prime software.

2.1.1 Set a High-Speed Target

For silicon efficiency, set your speed target as high as possible. The Stratix 10 LUT is
essentially a tiny ROM capable of a billion lookups per second. Operating a Stratix 10
LUT at 156 MHz uses only 15% of the capacity.

While setting a high-speed target, you must also maintain a comfortable guard band
between the speed at which you can close timing, and the actual system speed
required. Addressing the timing closure initially with margin is much easier.

2.1.1.1 Speed and Timing Closure

Failure to close timing occurs when actual circuit performance is lower than the fyax
requirement of your design. If the target FPGA device has many available resources
for logic placement, timing closure is easier and requires less processing time.

Timing closure of a slow circuit is not inherently easier than timing closure of a faster
circuit, because slow circuits typically include more combinational logic between
registers. When there are many nodes on a path, the Fitter must place nodes away
from each other, resulting in significant routing delay. In contrast, a heavily pipelined
circuit is much less dependent on placement, which simplifies timing closure.
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Figure 3.

Acceptable and Slow Routing Delays
Good

’

Acceptable Slow Slow

Use realistic timing margins when creating your design. Consider that portions of the
design make contact and distort one other as logic is added to the system. Adding
stress to the system is typically detrimental to speed. Allowing more timing margin at
the start of the design process helps mitigate this problem.

2.1.1.2 Speed and Latency

Running an FPGA at higher clock rates accomplishes more work with the same
resources. The following table illustrates the rate of growth for various types of circuits
as the bus width increases. The circuit functions interleave with big O notations of
area as a function of bus width, starting at sub-linear with log(N), to super-linear with
N*N.

Table 2. Effect of Bus Width on Area
Circuit Function

Bus Width (N) log N Mux ripple add N*log N barrel shift Crossbar N*N
16 4 5 16 64 64 80 256
32 5 11 32 160 160 352 1024
64 6 21 64 384 384 1344 4096
128 7 43 128 896 896 5504 16384
256 8 85 256 2048 2048 21760 65536

Typically, circuit components use more than 2X the area as the bus width doubles. For
a simple circuit like a mux, the area grows sub-linearly as the bus width increases.
Cutting the bus width of a mux in half provides slightly worse linear area benefit. A
ripple adder grows linearly as the bus width increases.

More complex circuits, like barrel shifters and crossbars, grow super-linearly as bus

width increases. If you cut the bus width of a barrel shifter, crossbar, or other complex

circuit in half, the area benefit can be significantly better than half, approaching
quadratic rates. For components in which all inputs affect all outputs, increasing the
bus width can cause quadratic growth. The expectation is then that, if you take
advantage of speed-up to work on half-width buses, you generate a design with less
than half the original area.

Intel® Stratix® 10 High-Performance Design Handbook
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When working with streaming datapaths, the number of registers is a fair
approximation of the latency of the pipeline in bits. Reducing the width by half creates
the opportunity to double the number of pipeline stages without negatively impacting
latency. Generally, the amount of additional registering required to go faster is
significantly less than double, creating latency profit.

2.1.2 Experiment and Iterate

Experiment with settings and design changes if your design's performance does not
initially meet performance requirements. Intel FPGA reprogrammability allows
experimentation until you achieve your goals. Commonly, a design performance
gradually becomes inadequate as technology requirements increase over time. For
example, if you apply an existing design element to a new context at a wider
parameterization, the speed performance likely declines.

When experimenting with circuit timing, there is no permanent risk from
experimentation that temporarily breaks the circuit to collect a data point. Add
registers in illegal locations to determine the effect on overall timing. If the
prospective circuit then meets the timing objective, you can make further investment
to legalize the placement.

If a circuit remains too slow, even when liberally inserting registers, reconsider more
basic elements of the design. Moving up or down a speed grade, or compressing
circuitry in LogicLock® Plus regions can help speed investigation.

2.1.3 Compile Components Independently

Compile the design subcomponents as stand-alone entities to rapidly identify and
optimize performance bottlenecks. Competition for resources and physical constraints
(like pin locations) reduces overall design performance.

Once embedded at a higher level, the block speed may be the same. However, the
speed may never be any faster with other components than alone. As a margin of
safety, establish a bright line rule for the required component speed. For example,
when targeting a 20% timing margin, a component with 19.5% margin is a failure.
Base your timing margin targets on the context. For example, you can allow a timing
margin of 10% for a high-level component representing half the chip. However, if the
rule is not explicit, the margin erodes as 10% becomes 9%, then 6%, and so on.

Use the Chip Planner to visualize the system level view. The following floorplan shows
a component that uses 5% of the logic on the device (central orange) and 25% of the
M20K blocks (red stripes).

Intel® Stratix® 10 High-Performance Design Handbook
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Figure 4. M20K Spread in Chip Planner

The system level view does not show anything alarming about the resource ratios.
However, significant routing congestion is apparent. The orange memory control logic
fans out across a large physical span to connect to all of the memory blocks. The
design functions satisfactorily alone, but struggles when unrelated logic cells occupy
the intervening area. Restructuring this block to physically distribute the control logic
better relieves the high-level problem.

Individual module compilation prepares you for subsequent hardware debug cycles.
Independent, coherent operation of portions of the design is beneficial. This condition
allows test and modification of only those sections, without the runtime and
complexities of the entire system.

2.1.4 Optimize Sub-Modules

During design optimization, you can isolate the critical part in one or two sub-modules
from a large design, and then compile the sub-modules. Compiling part of a design
reduces compile time and allows you to focus on optimization of the critical part.

2.1.5 Avoid Broadcast Signals

Avoid using broadcast signals whenever possible. Broadcast signals are high fan-out
control nets that can create large latency differences between paths. Path latency
differences complicate the Compiler's ability to find a suitable location for registers,

resulting in unbalanced delay paths. Use pipelining to address this issue and duplicate
registers to drive broadcast signals.

Broadcast signals travel a large distance to reach individual registers. Because those
fan-out registers may be spread out in the floorplan, use manual register duplication
to improve placement. The correct placement of pipeline stages has a significant
impact on performance.

Intel® Stratix® 10 High-Performance Design Handbook
9
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Figure 5. Sub-Optimal Pipelining of Broadcast Signals

The yellow box highlights inserted registers in a module to help with timing. The block
broadcasts the output to several transceiver channels. These extra registers may not
improve timing sufficiently because the final register stage fans out to destinations
over a wide area of the device.

Channel 0
D
RIS

Channel 1

D Q—{D Q—D Q » D 0<:

Channel n

Al 0<:

A better approach to pipelining is to duplicate the last pipeline register, and then place
a copy of the register in the destination module (the transceiver channels in this
example). This method results in better placement and timing. The improvement
occurs because each channel's pipeline register placement helps cover the distance
between the last register stage in the yellow module, and the registers in the
transceivers, as needed.

In addition to duplicating the last pipeline register, apply the dont_merge synthesis
attribute to avoid merging of the duplicate registers during synthesis, which eliminates
any benefit. The Compiler automatically adds pipeline stages and moves registers into

Hyper-Registers, whenever possible. You can also use manual pipelining to drive even
better placement result.

Figure 6. Optimal Pipelining of Broadcast Signals

Channel 0
w0 QD 0<

Channel 1

D Q—D Q »D QD 0<

Channel n

\‘D QD Q<I
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2.2 Hyper-Retiming (Facilitate Register Movement)

Figure 7.

The Retime stage of the Fitter can balance register chains by retiming (moving) ALM
registers into Hyper-Registers in the routing fabric. The Retime stage also performs
sequential optimization by moving registers backwards and forwards across
combinatorial logic. By balancing the propagation delays between each stage in a
series of registers, the retiming process shortens the critical paths, reduces the clock
period, and increases the frequency of operation.

The Retime stage then runs automatically during Fitter processing to move the
registers into ideal Hyper-Register locations. This Hyper-Retiming process requires
minimal effort, while resulting in 1.1 - 1.3x performance gain for Stratix 10 devices,
compared to previous generation high-performance FPGAs.

Moving Registers across LUTs

Registers on the left before retiming, with worst case delay of two LUTs. Registers on
the right after retiming, with worst case delay of one LUT.

'\/. Backward
Retiming
I\_/V
—
Forward
Retiming

Intel® Stratix® 10 High-Performance Design Handbook
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When the Compiler cannot retime a register, this is a retiming restriction. Such
restrictions limit the design’s fyax. Minimize retiming restrictions in performance-
critical parts of your designs to achieve the highest performance.

There are a variety of design conditions that limit performance. Limitations can relate
to hardware characteristics, software behavior, or the design characteristics. Use the
following design techniques to facilitate register retiming and avoid retiming
restrictions:

¢ Avoid asynchronous resets, except where necessary. Refer to the Reset Strategies
section.

¢ Avoid synchronous clears. Synchronous clears are usually broadcast signals that
are not conducive to retiming.

e Use targeted wildcards or names in timing constraints and exceptions. Refer to the
Timing Constraint Considerations section.

e Avoid single cycle (stop/start) flow control. Examples are clock enables and FIFO
full/empty signals. Consider using valid signals and almost full/empty,
respectively.

e Avoid preserve or don't touch register attributes. Refer to the Retiming
Restrictions and Workarounds section.

e For information about adding pipeline registers, refer to the Hyper-Pipelining (Add
Pipeline Registers) section.

e For information about addressing loops and other RTL restrictions to retiming,
refer to the Hyper-Optimization (Optimize RTL) section.

The following sections provide design techniques to facilitate register movement in
specific design circumstances.

Related Links

e Reset Strategies on page 12

e Timing Constraint Considerations on page 18

e Hyper-Pipelining (Add Pipeline Registers) on page 25

e Retiming Restrictions and Workarounds on page 88

2.2.1 Reset Strategies

This section recommends techniques to achieve maximum performance with resets.
For the best performance, avoid resets (asynchronous and synchronous), except when
necessary. Because Hyper-Registers do not have asynchronous clears, you cannot
move any register with an asynchronous clear into a Hyper-Register location.

Using a synchronous clear instead of an asynchronous clear allows retiming the
register. Refer to the Synchronous Resets and Limitations section for more detailed
information about retiming behavior for registers with synchronous clears. Some
registers in your design require synchronous or asynchronous clears, but you must
minimize the number for best performance.

Related Links
Synchronous Resets and Limitations on page 117

Intel® Stratix® 10 High-Performance Design Handbook
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2.2.1.1 Removing Asynchronous Clears

(intel”)

Remove asynchronous clears if a circuit naturally resets when the reset is held long
enough to reach a steady-state equivalent of a full reset.

Figure 8. Verilog HDL and VHDL Asynchronous Clear Examples
Verilog HDL VHDL
always @(posedge clk, aclr) PROCESS(clk, aclr) BEGIN
if (aclr) begin IF (aclr = "1%) THEN
reset_synch <= 1"b0; reset_synch <= "0%;
aclr_int <= 1°b0; aclr_int <= "07;
end ELSIF rising_edge(clk) THEN
else begin reset_synch <= "1°%;
reset_synch <= 1"bl; aclr_int <= reset_synch;
aclr_int <= reset_synch; END IF;
end END PROCESS;
always @(posedge clk, aclr_int) PROCESS(clk, aclr_int) BEGIN
if (aclr_int) begin IF (aclr_int = "1%) THEN
a <= 17b0; a <= "07;
b <= 1"b0; b <= "0";
Cc <= 1°b0; c <= "0";
d <= 1"b0; d <= "0";
out <= 17b0; output <= "0-°;
end ELSIF rising_edge(clk) THEN
else begin a <= input;
a <= in; b <= a;
b <= a; Cc <= b;
Cc <= b; d <= c;
d <= c; output <= d;
out <= d; END 1F;
end END PROCESS;
Asynchronous clear clears all registers in the pipeline.
They cannot be placed in Hyper-Registers.
Figure 9. Circuit Using Full Asynchronous Reset

The following figure shows the same logic as the Asynchronous Clear Examples in

schematic form.

Reset—T—l

.Feeds ACLR . .
= M ) S S A
— = H H H
X X X X X
Reset 0 0 0 0 0

Intel® Stratix® 10 High-Performance Design Handbook
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Figure 10. Partial Asynchronous Reset

After a partial reset, if the modified circuit settles to the same steady state as the
original circuit, then the modification is functionally equivalent. The following figure
shows removal of asynchronous clears from the middle of the circuit.

Add Enough Stages
Res: Feeds ACLR
Feeds SCLR or ACLR
— 1 —~ ~ 1 >
X X X X X
Reset 0 X X X 0
0 0 X X 0
0 0 0 X 0
0 0 0 0 0

Figure 11. Circuit with an Inverter in the Register Chain

Circuits that include inverting logic typically require additional synchronous clears to
remain in the pipeline, as illustrated in the following figure.

Inverter
Reset Feeds ACLR
[ ) s S SRR SRS S

_ | - L4 - - )
X X X X X
Reset 0 0 0 0 0
Operation 1 0 1 0 0
0 1 1 1 0

Intel® Stratix® 10 High-Performance Design Handbook
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Figure 12.

Figure 13.

Circuit with an Inverter in the Register Chain with Asynchronous Clear

After removing the reset and applying the clock, the register outputs do not settle to
the reset state. The inverting register cannot have its asynchronous clear removed to
be equivalent to the above circuit after settling out of reset.

Add Enough Stages This Register Required
to Keep Its Clear

Reset Feeds ACLR

14 [
Feeds SCLR or ACLR
_ | - L q - - )
X X X X X
Reset 0 X X X 0
0 0 X X 0
0 0 1 X 0
Steady State Is Not Correct- 0 0 1 1 0
Operation 1 0 1 1 1
0 1 1 1 1

Validating the Output to Synchronize with Reset

To avoid non-naturally resetting logic caused by inverting functions, validate the
output to synchronize with reset removal. Then, if the validating pipeline can enable
the output when the computational pipeline is actually valid, the behavior is equivalent
with reset removal. This process is suitable even if the computation portion of the
circuit does not naturally reset.

Add Enough Stages

Feeds SCLR or ACLR

! ! !—\
Ll Ll IN

The following figures show Verilog HDL and VHDL examples of the Figure 10 on page
14. Apply this example to your design to remove unnecessary asynchronous resets

Intel® Stratix® 10 High-Performance Design Handbook
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Figure 14. Verilog HDL Example Using Minimal or No Asynchronous Clears

The following figures show Verilog HDL and VHDL examples of the Figure 10 on page
14. Apply this example to your design to remove unnecessary asynchronous resets

Verilog HDL

always @(posedge clk, posedge aclr)

if (aclr) begin
reset_synch_1 <= 1"b0;
reset_synch_2 <= 1"b0;
aclr_int <= 17b0;

end

else begin
reset_synch_1 <= 1%bl;
reset_synch_2 <= reset_synch_1;
aclr_int <= reset_synch_2;

end

always @(posedge clk, posedge aclr_int)
if (aclr_int)

out <= 1"b0; Asynchronous Clear for
else Output Register Only
out <= d;

always @(posedge clk)
if (reset_synch_2)

a <= 1"b0; Synchronous Clear for
else Input Register Only
a <= 1n;

always @(posedge clk) begin
b <= a:; . .
c <= ‘2 Naturally Resetting Registers
d <= c;

end

Figure 15. VHDL Example Using Minimal or No Asynchronous Clears

Synchronous Clear for
Input Register Only
PROCESS (clk, aclr) BEGIN PROCESS (clk) BEGIN
IF (aclr = "1%) THEN IF rising_edge(clk) THEN
reset_synch_1 <= "0%; IF (reset_synch_2 = "1%) THEN
reset_synch_2 <= "0%; a <= "0";
aclr_int <= "0"; ELSE
ELSIF rising_edge(clk) THEN a <= input;
reset_synch_1 <= "1%; END IF;
reset_synch_2 <= reset_synch_1; END IF;
aclr_int <= reset_synch_2; END PROCESS;
END IF;
END PROCESS; PROCESS (clk) BEGIN
IF rising_edge(clk) THEN
PROCESS (clk, aclr_int) BEGIN b <= a;
IF (aclr_int = "1%) THEN Cc <= b;
output <= "07; d <= c;
ELSIF rising_edge(clk) THEN END IF;
output <= d; END PROCESS;
END IF;
END PROCESS;
Asynchronous Clear for Naturally Resetting Registers

Output Register Only
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2.2.1.2 Synchronous Clears on Global Clock Trees

Using a global clock tree to distribute a synchronous clear may limit retiming
performance improvements. Global clock trees do not have Hyper-Registers. As such,
there is less flexibility to retime registers that fan out through a global clock tree
compared to the routing fabric.

2.2.1.3 Synchronous Resets on I/0 Ports

The Compiler does not retime registers driving an output port or being driven by an
input port. If a synchronous clear is on one of these I/O registers, you cannot retime
the register. This restriction is not typical of practical designs in which logic drives
resets. However, this issue may become apparent in benchmarking a smaller piece of
logic, where the reset may come from an I/O port. In this case, you cannot retime any
of the registers that the reset drives. Adding some registers to the synchronous reset
path corrects this condition.

2.2.1.4 Duplicate and Pipeline Synchronous Resets

If a synchronous clear signal causes timing issues, duplicating the synchronous clear

signal between the source and destination registers can resolve the timing issue. The
registers pushed forward need not contend for Hyper-Register locations with registers
being pushed back. For small logic blocks of a design, this method is a valid strategy

to improve timing.

2.2.2 Clock Enable Strategies

High fan-out clock enable signals can limit the performance achievable by retiming.
This section provides recommendations for the appropriate use of clock enables.

2.2.2.1 Localized Clock Enable

The localized clock enable has a small fan-out. The localized clock enable often occurs
in a clocked process or an always block. In these cases, the signal’s behavior is
undefined under a particular branch of a conditional case or i f statement. As a
result, the signal retains its previous value, which is a clock enable.

To check whether a design has clock enables, view the Fitter Report O Plan Stage
0O Control Signals Compilation report and check the Usage column. Because the
localized clock enable has a small fan-out, retiming is easy and usually does not cause
any timing issues.

2.2.2.2 High Fan-Out Clock Enable

Avoid a high fan-out signal whenever possible. The high fan-out clock enable feeds a
large amount of logic. The amount of logic is so large that the registers that you
retime are pushing or pulling registers up and down the clock enable path for their
specific needs. This pushing and pulling can result in conflicts along the clock enable
line. This condition is similar to the aggressive retiming in the Synchronous Resets
Summary section. Some of the methods discussed in that section, like duplicating the
enable logic, are also beneficial in resolving conflicts along the clock enable line.
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You typically use these high fan-out signals to disable a large amount of logic from
running. These signals might occur when a FIFO’s full flag goes high. You can often
design around these signals. For example, you can design the FIFO to specify almost
full a few clock cycles earlier, and allow the clock enable a few clock cycles to
propagate back to the logic it disables. You can retime these extra registers into the
logic if necessary.

Related Links
Synchronous Resets Summary on page 120

2.2.2.3 Clock Enable with Timing Exceptions

The Compiler cannot retime registers that are endpoints of multicycle or false path
timing exceptions. Clock enables are sometimes used to create a sub-domain that
runs at half or quarter the rate of the main clock. Sometimes these clock enables
control a single path with logic that changes every other cycle. Because you typically
use timing exceptions to relax timing, this case is less of an issue. If a clock enable
validates a long and slow data path, and the path still has trouble meeting timing, add
a register stage to the data path. Remove the multicycle timing constraint on the path.
The Hyper-Aware CAD flow allows the Retimer to retime the path to improve timing.

2.2.3 Synthesis Attributes

Your design may include registers with synthesis attributes such as preserve or
dont_touch. The Compiler does not retime registers with preserve or dont_touch
attributes, because it respects the directive to prevent optimization. Consider whether
you can remove the directives and allow the Compiler to retime affected registers. To
preserve a register for debugging observability, keep the preserve attribute. If you
preserve a register to manage register duplication, use dont_merge instead.

Related Links

Preserve Registers During Synthesis on page 60
Provides more information about Quartus Prime Synthesis Preserve Options

2.2.4 Timing Constraint Considerations

The use of timing constraints impacts compilation results. Timing constraints influence
how the Fitter places logic. This section describes timing constraint techniques that
maximize design performance.

2.2.4.1 Optimize Multicycle Paths

The Compiler does not retime registers that are the endpoints of an .sdc timing
constraint, including multicycle or false path timing constraints. Therefore, assign any
timing constraints or exceptions as specifically as possible to avoid retiming
restrictions.

Using actual register stages, rather than a multicycle constraint, allows the Compiler
the most flexibility to improve performance. For example, rather than specifying a
multicycle exception of 3 for combinational logic, remove the multicycle exception and
insert two extra register stages before or after the combinational logic. This change
allows the Compiler to balance the extra register stages optimally through the logic.
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2.2.4.2 Overconstraints

Example 1.

Example 2.

Overconstraints direct the Fitter to spend more time optimizing specific parts of a
design. Overconstraints can be appropriate in some situations to improve
performance. However, because legacy overconstraint methods restrict retiming
optimization, Stratix 10 devices support a new Is_post_route function that allows
retiming. The is_post_route function allows the Fitter to adjust slack delays for
timing optimization.

Stratix 10 Overconstraints Syntax (Allows Hyper-Retiming)

if { ! [is_post route] } {
# Put overconstraints here
T

Legacy Overconstraints Example (Prevents Hyper-Retiming)

### Over Constraint ###

# 1If {$::quartus(nameofexecutable) == "quartus_fit"} {

# set_min_delay 0.050 -from [get_clocks {CPRI|PHY|TRX*|*|rx_pma_clk}] -to
[get_clocks {CPRI|PHY|TRX*|*|rx_clkout}]

# 3}

2.2.5 Clock Synchronization Strategies

Figure 16.

Figure 17.

Use a simple synchronization strategy to reach maximum speeds in the Stratix 10
architecture. Adding latency on paths with simple synchronizer crossings is
straightforward. However, adding latency on other crossings is more complex.

Simple Clock Domain Crossing

This example shows a simple synchronization scheme with a path from one register of
the first domain (blue), directly to a register of the next domain (red).

LR B

Simple Clock Domain Crossing After Adding Latency
To add latency in the red domain for retiming, add the registers as shown.

LR b

The following figure shows a domain crossing structure that is not recommended for
use in Stratix 10 designs, but may exist in designs that target other device families.
The design contains some combinational logic between the blue clock domain and the
red clock domain. This logic is not properly synchronized and you cannot add registers
flexibly. The blue clock domain drives the combinational logic and the logic contains
paths that are launched on the red domain.
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Figure 18.

Figure 19.

Clock Domain Crossing at Multiple Locations

Add latency at the boundary of the red clock domain, but do not add registers on a
red to red domain path. Otherwise, the paths become unbalanced, potentially
changing design functionality. Although possible, adding latency in this scenario is
risky. Thoroughly analyze the various paths before adding latency.

Clock Domain Crossing at Multiple Locations After Adding Latency

For Stratix 10 designs, synchronize the clock crossing paths before entering
combinational logic. Adding latency is then more simple compared to the previous
example. Blue domain registers synchronize to the red domain before entering the
combinational logic. This method allows safe addition of pipeline registers in front of
synchronizing registers, without contacting a red to red path inadvertently. This
approach is the recommended synchronization method to take maximum advantage of
the Stratix 10 architecture performance.
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Figure 20. Improved Clock Domain Synchronization

A

2.2.6 Metastability Synchronizers

The Compiler detects registers that are part of a synchronizer chain. The Compiler
cannot retime the registers in a synchronizer chain. To allow retiming of the registers
in a synchronizer chain, add more pipeline registers at clock domain boundaries.

Metastability synchronizer chain length for S10 is 3. Registers required for

metastability are now marked in the Critical Chain report as REG (Metastability
required)

2.2.7 Initial Power-Up Conditions

The initial condition of your design at power-up represents the state of the design at
clock cycle 0. The initial condition is highly dependent on the underlying device
technology. Once the design leaves the initial state, there is no automated method to
return to that state. In other words, the initial condition state is a transitional rather
than functional state. In addition, other design components can affect the validity of

the initial state. For example, a PLL that is not yet locked upon power-up can impact
the initial state.

Therefore, do not rely on initial conditions when designing for Stratix 10 FPGAs.
Rather, use a single reset signal to place the design in a known, functional state until
all the interfaces have powered up, locked, and trained.

2.2.7.1 Specifying Initial Conditions

You can specify initial power-up conditions by inference in your RTL code. Quartus
Prime synthesis automatically converts default values for registered signals into

Power-up Level constraints. Alternatively, specify the Power-Up Level constraints
manually.
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Example 3.

Example 4.

Initial Power-Up Conditions Syntax (Verilog HDL)

reg q = 1°bl; //q has a default value of “1~
always @ (posedge clk)
begin
q <= d;
end

Initial Power-Up Conditions Syntax (VHDL)

SIGNAL q : STD_LOGIC := "1%"; -- q has a default value of "1°
PROCESS (clk, reset)
BEGIN
IF (rising_edge(clk)) THEN
q<:d;
END IF;
END PROCESS;

2.2.7.2 Initial Conditions and Retiming

Figure 21.

Figure 22.

The initial power-up conditions can limit the Compiler's ability to:

e Perform logic optimization during synthesis

e Move registers into Hyper-Registers during retiming

The following examples show how setting initial conditions to a known state ensures
that circuits are functionality equivalent after retiming.

Circuit Before Retiming

This sample circuit shows register F1 at power-up can have either state ‘0’ or state ‘1"
Assuming the clouds of logic are purely combinational, there are two possible states in
the circuit C1 (F1=°0" or F1=°17).

F1

@—D Q

Circuit After Retiming Forward

If the Retimer pushes register F1 forward, the Retimer must duplicate the register in
each of the branches that F1 drives.
F11

e
>

F12
REe
>
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After retiming and register duplication, the circuit now has four possible states at
power-up. The addition of two potential states in the circuit after retiming potentially
changes the design functionality.

Table 3. Possible Power-Up States After Retiming
F11 States F12 States
0 0
0 1
1 0
1 1

C-Cycle Equivalence

The c-cycle refers to the number of clock cycles a design requires after power-up to
ensure functional equivalence. The c-cycle value is an important consideration in
structuring your design's reset sequence. To ensure the design's functional
equivalence after retiming, apply an extra clock cycle after power-up. This extra clock
cycle ensures that the states of F11 and F12 are always identical. This technique
results in only two possible states for the registers, 0/0 or 1/1, assuming the
combinational logic is non-inverting on both paths.

Retiming Backward

Retiming registers backward is always a safe operation with a c-cycle value of O. In
this scenario, the Compiler merges F11 and F12 together. If you do not specify initial
conditions for F11 and F12, the Compiler always permits merging. If you specify initial
conditions, the Compiler accounts for the initial state of F11 and F12. In this case, the
retiming transformation only occurs if the transformation preserves the initial states.

If the Compiler transformation cannot preserve the initial states of F11 and F12, the
Compiler does not allow the retiming operation. To avoid changing circuit functionality
during retiming, apply an extra clock cycle after power-up to ensure the content of
F11 and F12 are always identical.

2.2.7.3 Retiming Reset Sequences

Under certain conditions, the Retime stage performs transformation of registers with a
c-cycle value greater than zero. This ability can help improve the maximum frequency
of the design. However, register retiming with a c-cycle equivalence value greater than
zero requires extra precaution to ensure functional equivalence after retiming.
Leverage existing reset sequences and add the appropriate humber of clock cycles as
described below to retain functional equivalence.

Reset Retiming Behavior

The Compiler's has the following behavior when retiming resets:

e Backward retiming with reset is safe and occurs, taking into consideration any
initial conditions.

e Forward retiming with reset always preserves the initial conditions.

e Register retiming assumes that registers with no initial conditions power up to 0
for retiming purpose. Retiming preserves this initial condition.

Intel® Stratix® 10 High-Performance Design Handbook
23



| | ®
l n tel ) 2 RTL Design Guidelines

Figure 23.

Ignoring Initial Conditions

Retime more registers as needed by ignoring initial conditions on registers. Specify the
ALLOW_POWER_UP_DONT_CARE option to ignore initial reset conditions and continue
with retiming:

set_global_assignment -name ALLOW_POWER_UP_DONT_CARE ON

When using ALLOW_POWER_UP_DONT_CARE, ensure that the registers your reset
sequence covers do not have initial conditions in RTL code.

Modifying the Reset Sequence
Follow these recommendations to maximize operating frequency of resets during
retiming:

e Remove sclr signals from all registers that reset naturally. This removal allows
the registers to move freely in the logic during retiming.

e Assign the power-up state of the registers covered by the reset sequence as don't
care. Ignore initial conditions on those registers.

e Set the ALLOW_POWER_UP_DONT_CARE global assignment to ON. This setting
maximizes register movement.

e Compute and add to the reset synchronizer the relevant amount of extra clock
cycles due to c-cycle equivalence.

Adding Clock Cycles to Reset

The Compiler does not report the c-cycle value of retiming transformations in the
design. However, evaluate the number and length of pipelines in your design. Then,
add enough clock cycles to guarantee the functional equivalence of the design when
exiting the reset sequence.

Many of the transformations that need attention have a c-cycle of 1. For example,
register duplication into multiple branches has this c-cycle. Regardless of the number
of duplicate registers, the register is always one connection away from its original
source. After one clock cycle, all the branches have the same value again.

The following examples show how adding clock cycles to the reset sequence ensures
the functional equivalence of the retimed design after the reset sequence.

Pipelining and Register Duplication

This example shows a pipelined set of registers with potential for forward retiming.

The c-cycle value equals 0.
F4 R P2 il Q
b S 3 > __Q
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Figure 24.

Figure 25.

Impact of One Register Move

This example shows a pipelined set of registers after forward retiming of one register.
Because the c-cycle value equals 1, the reset sequence for this circuit requires one
additional clock cycle for functional equivalence after reset.

F11
— O D
F4 F3 F2
D Q{0 QD O >
F12
> > > _—Q—D Q—Q

Impact of Two Register Moves

This example shows a pipelined set of registers after forward retiming of two registers.
Because the c-cycle value equals 2, the reset sequence for this circuit requires two
additional clock cycles for functional equivalence after reset.

21 1

O O O
F4 &)
D Q—D Q0 > >
F22 F12
> b O O O
> >

Each time a register from the pipeline is moved into the logic, the register duplicate
and the C-cycle value of the design is increased by one.

2.3 Hyper-Pipelining (Add Pipeline Registers)

Hyper-Pipelining is a design process that eliminates long routing delays by adding
additional pipeline stages in the interconnect between the ALMs. This technique allows
the design to run at a faster clock frequency. First run Fast-Forward compilation to
determine the best location and expected performance you can expect from adding
pipeline stages. This process requires minimal effort, resulting in 1.3 - 1.6x
performance gain for Stratix 10 devices, compared to previous generation high-
performance FPGAs.

Adding registers in your RTL is much easier if you plan ahead to accommodate
additional latency in your design. At the most basic level, planning for additional
latency means using parameterizable pipelines at the inputs and outputs of the clock
domains in your design. Refer to the Appendix: Pipelining Examples for pre-written
parameterizable pipeline modules in Verilog HDL, VHDL, and SystemVerilog.
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Changing latency is more complicated than just adding pipeline stages. You might
have to rework control logic, and other parts of the design or system software, to
work properly with data arriving later. Making such changes could be difficult in
existing RTL, but it may be easier in new parts of a design. Rather than hard-coding
block latencies into control logic, implement some latencies as parameters. In some
types of systems, you may be able to add a “valid data” flag to pipeline stages in a
processing pipeline to trigger various computations, instead of relying on a high-level
fixed concept of when data is valid.

Additional latency may also require changes to testbenches. When you create
testbenches, use the same techniques you use to create latency-insensitive designs.
Do not rely on a result becoming available in a predefined number of clock cycles, but
consider checking a “valid data” or “valid result” flag.

Latency-insensitive design is not appropriate for every part of a system. Interface
protocols that specify a number of clock cycles for data to become ready or valid must
conform to those requirements and may not be able to accommodate changes in
latency.

After you modify the RTL and place the prescribed number of pipeline stages at the
boundaries of each clock domain, the Retime stage automatically places the registers
within the clock domain at the optimal locations to maximize the performance. The
combination of Hyper-Retiming and Fast-Forward compilation helps to automate the
process when compared with conventional pipelining.

Related Links

e Appendix A: Parameterizable Pipeline Modules on page 115

e Precomputation on page 34

2.3.1 Conventional Versus Hyper-Pipelining
This section describes how Hyper-Pipelining simplifies this process of conventional
pipelining.
Conventional pipelining includes the following design modifications:
e Add two registers between logic clouds

e Modify HDL to insert a third register (or pipeline stage) into the design’s logic
cloud, which is Logic Cloud 2. This register insertion effectively creates Logic Cloud
2a and Logic Cloud 2b in the HDL

Figure 26. Conventional Pipelining User Modifications

Reg1 Reg2 Reg3 Regl  Pipel Reg2  Pipe2  Pipe3 Reg3
Logic Logic Logic Logic Logic
Cloud1 Cloudz Cloud1 CIoudZa (Ioud2b
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Figure 27.

Figure 28.

Hyper-Pipelining User Modifications

Hyper-Pipelining simplifies the process of adding registers. Add the registers—Pipe 1,
Pipe 2, and Pipe 3—in aggregate at one location in the design RTL. The Compiler
retimes the registers throughout the circuit to find the optimal placement along the
path. This optimization reduces path delay and maximizes the design's operating
frequency.

Reg1 Reg2 Reg3 Reg1 Pipe1 Pipe2 Pipe3 Reg2 Reg3

Logic Logic Logic Logic
Cloud1 Cloud2 Cloud1 (loud2
Hyper-Pipelining and Hyper-Retiming Implementation

The following figure shows implementation of additional registers after the retiming
stage completes optimization.

Regl  Pipel Pipe2 Pipe3 Reg2 Reg3 Regl  Pipel Reg2  Pipe2 Pipe3  Reg3
Logic Logic Logic Logic Logic
Cloud1 Cloud2 Cloud1 Cloud2a Cloud2b

The resulting implementation in the Hyper-Pipelining flow differs from the conventional
pipelining flow by the location of the Pipe 3 register. Because the Compiler is aware of
the current circuit implementation, including routing, it can more effectively locate the
added aggregate registers to meet the design’s maximum operating frequency. Hyper-
Pipelining requires significantly less effort than conventional pipelining techniques
because you can place registers at a convenient location in a data path, and the
compiler optimizes the register placements automatically.

2.3.2 Pipelining and Latency

Figure 29.

Adding pipeline registers within a path increases the number of clock cycles necessary
for a signal value to propagate along the path. Increasing the clock frequency can
offset the increased latency.

Hyper-Pipeline Reduced Latency

This example shows a previous generation Intel FPGA, with a 275 MHz fyax
requirement. The path on the left achieves 286 MHz, limited by the 3.5 ns delay. Data
requires three cycles to propagate through the register pipeline. Three cycles at 275
MHz is 10.909 ns to propagate through the pipeline.

[ ] [ ] Q
4—15ns —p4¢——35n ——p <4150 —p<417ns P4¢—18ns —p

If re-targeting a Stratix 10 device doubles the fyax requirement to 550 MHz, the path
on the right side of the figure shows how an additional pipeline stage retimes. The
path now achieves 555 MHz, limited by the 1.8 ns delay. The data requires four cycles
to propagate through the register pipeline. Four cycles at 550 MHz equals 7.273 ns to
propagate through the pipeline.
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To maintain the time to propagate through the pipeline with four stages compared to
three, meet the 10.909 ns delay of the first version by increasing the fyax of the
second version to 367 MHz, a 33% increase from 275 MHz.

2.3.3 Use Registers Instead of Multicycle Exceptions

Often designs contain modules with complex combinational logic (such as CRCs and
other arithmetic functions) that require multiple clock cycles to process. You constrain
these modules with multicycle exceptions that relax the timing requirements through
the block. You can use these modules and constraints in designs targeting Stratix 10
devices. Refer to the Design Considerations for Multicycle Paths section for more
information.

Alternatively, you can insert a number of register stages in one convenient place in a
module, and the Compiler balances them automatically for you. For example, if you
have a CRC function to pipeline, you do not need to identify the optimal decomposition
and intermediate terms to register. Add the registers at its input or output, and the
Compiler balances them.

Related Links
e Optimize Multicycle Paths on page 18
e Appendix A: Parameterizable Pipeline Modules on page 115

2.4 Hyper-Optimization (Optimize RTL)

After you accelerate data paths through Hyper-Retiming, Fast Forward compilation,
and Hyper-Pipelining, the design may still have limits of control logic, such as long
feedback loops and state machines.

To overcome such limits, use functionally equivalent feed-forward or pre-compute
paths, rather than long combinatorial feedback paths. The following sections describe
specific Hyper-Optimization for various design structures. This process can result in 2x
performance gain for Stratix 10 devices, compared to previous generation high-
performance FPGAs.

2.4.1 General Optimization Techniques

Use the following general RTL techniques to optimize your design for the HyperFlex
FPGA architecture.

2.4.1.1 Shannon’s Decomposition

Shannon’s decomposition plays a role in Hyper-Optimization. Shannon’s
decomposition, or Shannon’s expansion, is a way of factoring a Boolean function. You
can express a function as F = x.F, + x’F,’ where x.F, and x’F,’ are the positive and
negative co-factors of the function F with respect to x. You can factor a function with
four inputs as, (a, b, ¢, x) = x.(a, b, ¢, 1) + xX'.F(a, b, ¢, 0), as shown in the following
diagram. In Hyper-Optimization, the advantage of Shannon’s decomposition is that it
pushes the x signal to the head of the cone of input logic, making the x signal the
fastest path through the cone of logic. The x signal becomes the fastest path at the
expense of all other signals. Using Shannon’s decomposition also doubles the area
cost of the original function.
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Figure 30. Shannon's Decomposition
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Figure 31. Shannon's Decomposition Logic Reduction

Logic synthesis can take advantage of the constant-driven inputs and slightly reduce
the cofactors, as shown in the following diagram.
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Figure 32.

Figure 33.

Repeated Shannon's Decomposition

The following diagram shows how you can repeatedly use Shannon's decomposition to
decompose functions with more than one critical input signal, thus increasing the area
cost.

X
c

a —1
b — Fy B B

a4 X
b — —
C — FX a — F
| R B
a — —
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Shannon’s decomposition can be an effective optimization technique for loops. When
you perform Shannon’s decomposition on logic in a loop, the logic in the loop moves
outside the loop. The Compiler can now pipeline the logic moved outside the loop.

Loop Example before Shannon's Decomposition

This diagram shows a loop that contains a single register, four levels of combinational
logic, and an additional input. Adding registers in the loop changes the functionality,
but you can move the combinational logic outside the loop by performing Shannon’s
decomposition.

(Cannot Be Pipelined

@%@T

The output of the register in the loop is 0 or 1. You can duplicate the combinational
logic that feeds the register in the loop, tying one copy’s input to 0 and the other
copy’s input to 1.
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Figure 34.

Loop Example after Shannon's Decomposition

The register in the loop then selects one of the two copies, as shown in the following
diagram.

(annot Be
Pipelined

(an Be Pipelined

0\\\j;
4@
Performing Shannon’s decomposition on the logic in the loop reduces the amount of

logic in the loop. The Compiler can now perform registers retiming or Hyper-Pipelining
on the logic removed from the loop, and increase the circuit performance.

2.4.1.1.1 Shannon’s Decomposition Example

Example 5.

The sample circuit adds or subtracts an input value from the internal_total value
based on its relationship to a target value. The core of the circuit is the target_loop
module, shown in the following example.

Source Code before Shannon's Decomposition

module target loop (clk, sclr, data, target, running_total);
parameter WIDTH = 32;

input clk;

input sclr;

input [WIDTH-1:0] data;

input [WIDTH-1:0] target;

output [WIDTH-1:0] running_total;

reg [WIDTH-1:0] internal_total;

always @(posedge clk) begin

it (sclr)

begin

internal_total <= O;
end
else begin
internal_total <= internal_total + ((( internal_total > target) ? -

data:data)* target/4));

end
end
assign running_total = internal_total;
end module
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Figure 35.

Figure 36.

Example 6.

The module uses a synchronous clear, based on the recommendations to enable
Hyper-Retiming.

The following figure shows the Fast Forward Compile report for the target_loop
module instantiated in a register ring.

Fast Forward Compile Report before Shannon’s Decomposition

i Fast Forward Summary for Clock Domain clic I

| [ Step | Fast Forward Optimizations Applied | To Achieve Frmax I Slack [ Requirement r Limating Reason I
1  Base Performance 0, Including 0 pipdine stages 7471 MHz 3047 0870 Short PathiLong Path
(2 |Fast Forward Step #1 | 26, including 1 pipelne stage 248 94 MHz 23017 0970 Loop

3 | Hyper-Optimezation 28, incheding 1 pipeline stage - - 090 Loop

Hyper-Retiming reports about 248 MHz by adding a pipeline stage in the Fast Forward
Compile. The Limiting Reason column indicates that the critical chain is a loop.
Examining the critical chain report reveals that there is a repeated structure in the
chain segments. The repeated structure is shown as an example in the Optimizing
Loops section.

The following diagram shows a structure that implements the expression in the
previous example code. The functional blocks correspond to the comparison, addition,
and multiplication operations. The zero in each arithmetic block’s name is part of the
synthesized name in the netlist. The zero is because the blocks are the first zero-
indexed instance of those operators created by synthesis.

Elements of a Critical Chain Sub-Loop

internal_total

This expression is a candidate for Shannon’s decomposition. Instead of performing
only one addition with the positive or negative value of data, you can perform the
following two calculations simultaneously:

e internal_total - (data * target/4)
e internal_total + (data * target/4)

You can then use the result of the comparison internal_total > target to select
which calculation result to use. The modified version of the code that uses Shannon’s
decomposition to implement the internal_total calculation is shown in the
following example.

Source Code after Shannon's Decomposition

module target_loop_shannon (clk, sclr, data, target, running_total);
parameter WIDTH = 32;

input clk;

input sclr;

input [WIDTH-1:0] data;

input [WIDTH-1:0] target;

output [WIDTH-1:0] running_total;
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Figure 37.

reg [WIDTH-1:0] internal_total;
wire [WIDTH-1:0] total_minus;
wire [WIDTH-1:0] total_plus;

assign total_minus = internal_total - (data * (target / 4));
assign total_plus = internal_total + (data * (target / 4));

always @(posedge clk) begin
if (sclr)
begin
internal_total <= 0;
end
else begin
internal_total <= (internal_total > target) ? total_minus:total_plus);
end
end

assign running_total = internal_total;
endmodule

As shown in the following figure, the performance almost doubles after recompiling
the design with the code change.

Fast Forward Summary Report after Shannon's Decomposition

Fast Forward Summary for Clock Domain clkc |

| Step I Fast Forward Optimizations Applied | To Achieve Frnao | Slack | Requirement I Limating Reasen I
1 Base Performance 0. including 0 pipeling stages 486.85 MHz -1.054 0970 Insufficient Registers
2 |Fast Forward Step #1 | 37, including 1 pipeline stage 495 79 MHz -1.017  |0.970 Shadt Path/Long Path
3 | Hyper-Optirniz ation 37, including 1 pipeling stage - 0.970 Shoft PAth/Long Path

2.4.1.1.2 Identifying Circuits for Shannon’s Decomposition

Shannon's decomposition is a good solution for circuits in which you can rearrange
many inputs to control the final select stage. Account for new logic depths when
restructuring logic to use a subset of the inputs to control the select stage. Ideally, the
logic depth to the select signal is similar to the logic depth to the selector inputs.
Practically, there is a difference in the logic depths because it is difficult to perfectly
balance the number of inputs feeding each cloud of logic.

Shannon’s decomposition may also be a good solution for a circuit with only one or
two signals in the cone of logic that are truly critical, and others are static, or with
clearly lower priority.

Shannon’s decomposition can incur a significant area cost, especially if the function is
complex. There are other optimization techniques that have a lower area cost, as
described in this document.

2.4.1.2 Time Domain Multiplexing

Time domain multiplexing increases circuit throughput by using multiple threads of
computation. This technique is also known as C-slow retiming, or multithreading.

Time domain multiplexing replaces each register in a circuit with a set of C registers in
series. Each extra copy of registers creates a new computation thread. One
computation through the modified design takes C times as many clock cycles as the
original circuit. However, the Compiler can retime the additional registers to improve
the fyax by a factor of C. For example, instead of instantiating two modules running at
400 MHz, you can instantiate one module running at 800 MHz.
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Figure 38.

Figure 39.

Figure 40.

The following set of diagrams shows the process of C-slow retiming, beginning with an
initial circuit.

C-slow Retiming Starting Point

Edit the RTL design to replace every register, including registers in loops, with a set of
C registers, comprising one register per independent thread of computation.

C-slow Retiming Intermediate Point
This example shows replacement of each register with two registers.

Compile the circuit at this point. When the Compiler optimizes the circuit, it has more
flexibility to perform retiming with the additional registers.

C-Slow Retiming Ending Point

In addition to replacing every register with a set of registers, you must also multiplex
the multiple input data streams into the block, and demultiplex the output streams out
of the block. Use time domain multiplexing when a design includes multiple parallel
threads, each limited by a loop. The module you optimize must not be sensitive to
latency.

2.4.1.3 Loop Unrolling

Loop unrolling moves logic out of the loops, and into feed-forward flows. You can
further optimize the logic with additional pipeline stages.

2.4.1.4 Precomputation

Precomputation is one of the easiest and most beneficial techniques for optimizing
overall design speed. When confronted with critical logic, verify whether the signals
the computation implies are available earlier. Always compute signals as early as
possible to keep these computations outside of critical logic.

When trying to keep critical logic outside your loops, try precomputation first. The
Compiler cannot optimize logic within a loop easily using retiming only. The Compiler
cannot move registers inside the loop to the outside of the loop. The Compiler cannot
retime registers outside the loop into the loop. Therefore, keep the logic inside the
loop as small as possible so that it does not negatively impact fyax.

After precomputation, logic is minimized in the loop and the design precomputes the
encodings. The calculation is outside of the loop, and you can optimize it with
pipelining or retiming. You cannot remove the loop, but can better control the effect of
the loop on the design speed.
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Figure 41.

Restructuring a Design with an Expensive Loop

Before Precomputation

Payload —> FIFO —>

Expensive
readen Calculation

After Precomputation
Payload —_— FIFO p——p
Simple > Simple
Port Count —, lagie readen Lodic
Precompute

New Encoding

The following code example shows a similar problem. The original loop contains
comparison operators.

StateJdam:if
(RetryCnt <=MaxRetry&&JamCounter==16)
Next_state=StateBackOff;
else if (RetryCnt>MaxRetry)
Next_state=StateJamDrop;
else
Next_state=Current_state;

Precomputing the values of RetryCnt<=MaxRetry and JamCounter==16 removes
the expensive computation from the Statelam loop and replaces it with simple
boolean operations. The modified code is:

reg RetryCntGTMaxRetry;
reg JamCounterEgSixteen;
StateJam:if
('RetryCntGTMaxRetry && JamCounterEgSixteen)
Next_state=StateBackOff;
else if (RetryCntGTMaxRetry)
Next_state=StateJamDrop;
else
Next_state=Current_state;
always @ (posedge Clk or posedge Reset)
if (Reset)
JamCounterEqSixteen <= 0;
else if (Current_state!=StateJam)
JamCounterEqSixteen <= 0;
else
JamCounterEqSixteen <= (JamCounter == 15) ? 1:0;
always @ (posedge Clk or posedge Reset)
iT (Reset)
RetryCntGTMaxRetry <= 0;
else if (Current_state==StateSwitchNext)
RetryCntGTMaxRetry <= O;
else if (Current_state==StateJam&&Next_ state==StateBackOff)
RetryCntGTMaxRetry <= (RetryCnt >= MaxRetry) ? 1: O;
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2.4.2 Optimizing Specific Design Structures

This section describes common performance bottleneck structures, and
recommendations to improve fyax performance for each case.

2.4.2.1 High-Speed Clock Domains

Stratix 10 devices support very high-speed clock domains. The Compiler uses
programmable clock tree synthesis to minimize clock insertion delay, reduce dynamic
power dissipation, and provide clocking flexibility in the device core.

Device minimum pulse width constraints can limit the highest performance of Stratix
10 clocks. As the number of resources on a given clock path increase, uncertainty and
skew increases on the clock pulse. If clock uncertainty exceeds the minimum pulse
width of the target device, this lowers the minimum viable clock period. This effect is a
function of total clock insertion delay on the path. To counter this effect for high-speed
clock domains, use the Chip Planner and TimeQuest reports to optimize clock source
placement in your design.

If reports indicate limitation from long clock routes, adjust the clock pin assignment or
use Clock Region and/or LogicLock Plus Region assignments to constrain fan-out logic
closer to the clock source. Use Clock Region assignments to specify the clock sectors
and optimize the size of the clock tree.

After making any assignment changes, recompile the design and review the clock
route length and clock tree size. Review the Compilation Report to ensure that the
clock network does not restrict the performance of your design.

2.4.2.1.1 Visualizing Clock Networks

Visualize clock network implementation in the Chip Planner after running the Fitter.
The Chip Planner shows the source clock pin location, clock routing, clock tree size,
and clock sector boundaries. Use these views to make adjustment and reduce the
total clock tree size.

To visualize design clock networks in the Chip Planner:
1. Open a project.

2. On the Compilation Dashboard, click Fitter, Early Place, Place, Route, or
Retime to run the Fitter.

3. On the Tasks pane, double-click Chip Planner. The Chip Planner loads device
information and displays color coded chip resources.

4. On the Chip Planner Tasks pane, click Report Clock Details. The Chip Planner
highlights the clock pin location, routing, and sector boundaries. Click elements
under the Clock Details Report to display general and fan-out details for the
element(s).

5. To visualize the clock sector boundaries, click the Layers Settings tab and enable
Clock Sector Region. The green lines indicate the boundaries of each sector.
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Figure 42. Clock Network in Chip Planner
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Figure 43. Clock Sector Boundary Layer in Chip Planner
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2.4.2.1.2 Viewing Clock Networks in the Fitter Report

The Compilation Report provides detailed information about clock network
implementation following Fitter placement. View the Global & Other Fast Signals
Details report to display the length and depth of the clock path from the source clock
pin to the clock tree.

To view clock network implementation in Fitter reports:
Open a project.

2. On the Compilation Dashboard, click Fitter, Place, Route to run the Fitter.
3. On the Compilation Dashboard, click the Report icon for the completed stage.
4. Click Global & Other Fast Signals Details. The table displays the length of the

clock route from source to the clock tree, and the clock region depth.

Figure 44. Clock Network Details in Fitter Report
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2.4.2.1.3 Viewing Clocks in TimeQuest

The TimeQuest timing analyzer reports high speed clocks that are limited by long clock
paths. Open the Fmax Summary report to view any clock fyax that is restricted by
high minimum pulse width violations (tcy), or low minimum pulse width violation (tc).
Top view clock network data in TimeQuest:

1. Open a project.

2. On the Compilation Dashboard, click TimeQuest Timing Analysis. After
TimeQuest analysis is complete, the TimeQuest Timing Analyzer folder appears
in the Compilation Report.

3. Under the Slow 900mV 100C Model folder, click the Fmax Summary report.

To view path information details for minimum pulse width violations, in the
Compilation Report, right-click the Minimum Pulse Width Summary report and
click Generate Report in TimeQuest. TimeQuest loads the timing netlist.

Click Reports [0 Custom Reports 0 Report Minimum Pulse Width.

6. In the Report Minimum Pulse Width dialog box, specify options to customize
the report output and then click OK.

7. Review the data path details for report of long clock routes in the Slow 900mV
100C Model report.
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Figure 45. Minimum Pulse Width Details Show Long Clock Route
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2.4.2.2 Restructuring Loops

Loops are a primary target of restructuring techniques because they fundamentally
limit performance. A loop is a feedback path in a circuit. Loops may be simple and
short, with a small amount of combinational logic on a feedback path. Loops may be
very complex, potentially traveling through multiple registers before returning to the
original register. All useful circuits contain loops.

The Compiler never retimes registers into a loop because adding a pipeline stage to a
loop would change functionality. However, change your RTL manually to restructure
loops to improve performance. Perform loop optimization after analyzing performance
bottlenecks with Fast Forward compile. Also apply these techniques to any new RTL in
your design.

2.4.2.3 Control Signal Backpressure

This section describes RTL design techniques to control signal backpressure. The
Stratix 10 architecture efficiently streams data. Because the architecture supports
very high clock rates, it is difficult to send feedback signals to reach large amounts of
logic in one clock cycle. Inserting extra pipeline registers also increases backpressure
on control signals. Data must flow forward as much as possible.
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Figure 46.

Figure 47.

Single clock cycle control signals create loops that can prevent or reduce the
effectiveness of pipelining and register retiming. This example depicts a ready signal
that notifies the upstream register of readiness to consume data. The ready signals
must freeze multiple data sources at the same time.

Control Signal Backpressure
| Am Not Ready for the Next Data

1 v |
B = i s B e

Modifying the original RTL to add a small FIFO buffer that relieves the pressure
upstream is a straightforward process. When the logic downstream of this block is not
ready to use the data, the FIFO stores the data.

Using a FIFO Buffer to Control Backpressure
This Is Valid Data

] e e T |
—> —b[:)—b —b()—b > FI:fO > —>
Buffer

Please Try to Slow Down Soon

A

The goal is for data to reach the FIFO buffer every clock cycle. An extra bit of
information decides whether the data is valid and should be stored in the FIFO buffer.
The critical signal now resides between the FIFO buffer and the downstream register
that consumes the data. This loop is much smaller. You can now use pipelining and
register retiming to optimize the section upstream of the FIFO buffer.

2.4.2.4 Flow Control with FIFO Status Signals

High clock speeds require consideration when dealing with flow control signals. This
consideration is particularly important with signals that gate a data path in multiple
locations at the same time. For example, with clock enable or FIFO full/empty signals.
Instead of working with immediate control signals, use a delayed signal. You can build
a buffer within the FIFO block. The control signals indicate to the upstream data path
that it is almost full, leaving a few clock cycles for the upstream data to receive their
gating signal. This approach alleviates timing closure difficulties on the control signals.

When you use FIFO full and empty signals, you must process these signals in one
clock cycle to prevent overflow or underflow.
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Figure 48.

Figure 49.

Figure 50.

FIFO Flow Control Loop
The loop is formed while reading control signals from the FIFO.

FIFO —> data
read read_req
empty empty

If you use an almost full or almost empty signal instead, you can add pipeline
registers in the flow control loop. The lower the almost full threshold, and the higher
the almost empty threshold, the more registers you can add to the signal.

Improved FIFO Flow Control Loop with Almost Full instead of Full FIFO

The following example shows two extra registers in the full control flow signal. When
the FIFO block signals that it is nearly full, the circuit requires two clock cycles to stop
the data flow. Size the FIFO block to allow for proper storage of those extra valid data.
The extra two pipeline registers in the control path help with routing, and enable
higher speed than with traditional single-cycle FIFO control scheme.

FIFO Full

i FIFO  Almost Full

(> =

You can use skid buffers to pipeline a FIFO. If necessary, you can cascade skid buffers.
When you insert skid buffers, they unroll the loop that includes the FIFO control
signals. The skid buffers do not eliminate the loop in the flow control logic, but the
loop transforms into a series of shorter loops. In general, switch to almost empty and
almost full signals instead of using skid buffers.

Data ) FIFO ) - Data

Producer Producer

>

FIFO Flow Control Loop with Two Skid Buffers in a Read Control Loop

FIFO dat
———» data
7/ . read_re
read T—@ e
empty empty
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If you have loops involving FIFO control signals, and they are broadcast to many
destinations for flow control, consider whether you can eliminate the broadcast
signals. Pipeline broadcast control signals, and use almost full and almost empty
status bits from FIFOs.

Example 7. Skid Buffer Example

/ synopsys translate_off
// timescale 1 ps / 1 ps
// synopsys translate_on

module singleclock_fifo_lowell
#(

parameter DATA_WIDTH = 8,

parameter FIFO_DEPTH = 16,

parameter SHOWAHEAD = "ON", // "ON" = showahead mode ("pop”" is an
acknowledgement); "OFF" = normal mode (“pop" is a request).

parameter RAM_TYPE = "AUTO™, // "AUTO"™ or "MLAB" or '"M20K™".

// Derived

parameter ADDR_WIDTH = $clog2(FIFO_DEPTH) + 1 // e.g. clog2(64) = 6,
but 7 bits needed to store 64 value
)
« i

input wire clk,

input wire rst,

input wire [DATA_WIDTH-1:0] in_data, // write data

input wire pop, // rd request

input wire push, // wr request

output wire out_valid, // not empty

output wire in_ready, // not full

output wire [DATA WIDTH-1:0] out_data, // rd data

output wire [ADDR_WIDTH-1:0] Tfill_level
)

wire scfifo_empty;

wire scfifo_full;

wire [DATA _WIDTH-1:0] scfifo_data_out;

wire [ADDR_WIDTH-1:0] scfifo_usedw;

logic [DATA_WIDTH-1:0] out_data_1q;
logic [DATA_WIDTH-1:0] out_data_2q;

logic out_empty_1q;
logic out_empty_2q;
logic e _pop_1;
logic e_pop_2;
logic e_pop_qual;

assign out_valid
assign iIn_ready
assign out_data
assign Fill_level

~out_empty_2q;

~scfifo_full;

out_data_2q;

scfifo_usedw + lout _empty 1q + lout_empty_2q;

// add output pipe
assign e_pop_1 = out_empty_1q || e_pop_2;
assign e_pop_2 = out_empty 2q || pop;
assign e_pop_qual = Iscfifo_empty && e pop_1;
always_ff@(posedge clk)
begin
if(rst == 1"b1)
begin
out_empty _1q <= 1"bl; // empty is 1 by default
out_empty 2q <= 1"bl; // empty is 1 by default
end
else begin
if(e_pop_1)
begin
out_empty_1q <= scfifo_empty;
end
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//

if(e_pop_2)
begin
out_empty_2q <= out_empty_1q;
end
end
end
always_ ff@(posedge clk)
begin
if(e_pop_1)
out_data_l1q
iT(e_pop_2)
out_data_2q
end

<= out_data_1q;

scfifo scfifo_component

-clock (clk),

.data (in_data),

-rdreq (e_pop_qual),

-wrreq (push),

-empty (scfifo_empty),

-Full (scfifo_full),

. (scfifo_data_out),

-usedw (scfifo_usedw),
.aclr (rst),

.aclr (1°b0),

.almost_empty (),
.almost_full (),

<= scfifo_data_out;

.eccstatus O,
// .sclr (17b0)
-sclr (rst) // switch to sync reset
defparam

scfifo_component.add_ram_output_register = "ON",
scfifo_component.enable_ecc = "FALSE",
scfifo_component. intended_device_family = "Stratix"
scfifo_component. Ipm_hint (RAM_ TYPE == "MLAB') ?

"RAM_BLOCK_TYPE=MLAB" : ((RAM_TYPE == "'M20K') ? "RAM _BLOCK_TYPE=M20K™ : "'"),
scFifo component.lpm numwords = FIFO_DEPTH,
scfifo_component. Ipm_showahead SHOWAHEAD,
scfifo_component. Ipm_type "scfifo",

scfifo_component. Ipm_width
scfifo_component. Ipm_widthu

scfifo_component.overflow_checking
scfifo_component.underflow_checking

scfifo_component.use_eab

endmodule

2.4.2.5 Read-Modify-Write Memory

DATA_WIDTH,
ADDR_WIDTH,
YON'
“ON™,
""ON™;

Stratix 10 M20K memory blocks support coherent reads to simplify implementing

read-modify-write memory. Read-modify-write memory is useful in applications such
as networking statistics counters. Read-modify-write memory is also useful in any
application that stores a value in memory that requires incrementing and re-writing in

a single cycle.

Stratix 10 M20K memory blocks simplify implementation by eliminating any need for
hand-written caching circuitry. Caching circuitry that must pipeline the modify
operation over multiple clock cycles, because of high clock speeds or large counters,

becomes complex.
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To use the coherent read feature, connect memory according to whether you register
the output data port. If you register the output data port, add two register stages to
the write enable and write address lines when you instantiate the memory.

Figure 51. Registered Output Data Requires Two Register Stages
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M20K Memory
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i wen Read Feature
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If you do not register the output data port, add one register stage to the write enable
and write address lines when you instantiate the memory.

Figure 52. Unregistered Output Data Requires One Register Stage
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Use of coherent read has the following restrictions:

Must use the same clock for reading and writing.
Must use the same width for read and write ports.
Cannot use ECC.

Cannot use byte enable.

Figure 53. Pipelining Read-Modify-Write Memory

The following diagram shows a pipelining method for a read-modify-write memory that
improves performance, without maintaining a cache for tracking recent activity. If you
require M20K features that are incompatible with coherent read, or if you do not wish
to use coherent read, use the following alternative approaches to improve the fyax
performance of memory:

Break the modification operation into smaller blocks that can complete in one
clock cycle.

Ensure that each chunk is no wider than one M20K memory block. Data words are
split into multiple n-bit chunks, where each chunk is small enough for efficient
processing in one clock cycle.

To increase fyax, increase the number of memory blocks, use narrower memory
blocks, and increase the latency. To decrease latency, use fewer and wider
memory blocks, and remove pipeline stages appropriately. A loop in a read-
modify-write circuit is unavoidable because of the nature of the circuit, but the
loop in this solution is small and short. This solution is scalable, because the
underlying structure remains unchanged regardless of the number of pipeline
stages.
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2.4.2.6 Counters and Accumulators

Performance-limiting loops occur rarely in small, simple counters. Counters with
unnatural rollover conditions (not a power of two), or irregular increments, are more

ikely to have a performance-limiting critical chain. When a performance-limiting loop
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Figure 54.

occurs in a small counter (roughly 8 bits or less), write the counter as a fully decoded
state machine, depending on all the inputs that control the counter. The counter still
contains loops, but they are smaller, and not performance-limiting. When the counter
is small (roughly 8 bits or less), the fitter implements it in a single LAB. This
implementation makes the counter fast because all the logic is placed close together.

You can also use loop unrolling to improve counter performance.

Counter and Accumulator Loop

In a counter and accumulator loop, a register's new value depends on its old value.
This includes variants like LFSRs (linear feedback shift register) and gray code
counters.

+1

Counter Accumulator

L

2.4.2.7 State Machines

Figure 55.

Loops related to state machines can be difficult to optimize. Carefully examine the
state machine logic to determine whether you can precompute any signals used in the
next state logic.

To effectively pipeline the state machine loop, consider adding skips states to a state
machine. Skips states are states added to allow more transition time between two
adjacent states.

To optimize state machine loops, sometimes it may be necessary to write a new state
machine.

State Machine Loop
In a state machine loop, the next state depends on the current state of the circuit.

Related Links

e Appendix A: Parameterizable Pipeline Modules on page 115

e Precomputation on page 34
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2.4.2.8 Memory

The section covers various topics about optimization for hard memory blocks in Stratix
10 devices.

2.4.2.8.1 True Dual-Port Memory

Stratix 10 devices support true dual-port memory structures. True dual-port memories
allow two write and two read operations at once.

Stratix 10 embedded memory components (M20k) have slightly different modes of
operation compared to previous Intel FPGA technology, including mixed-width ratio for
read/write access.

Stratix 10 devices do not support true dual-port memories in independent clock mode.
However, Stratix 10 devices fully support true dual-port memories in single clock
mode with an operation frequency of up to 1 GHz.

2.4.2.8.2 Use Simple Dual-Port Memories

Figure 56.

Example 8.

When migrating a design to a Stratix 10 device, consider whether your original design

contains a dual-port memory that uses different clocks on each port. If your design is

actually using the same clock on both write ports, restructure it using two simple dual-
clock memories.

The advantage of this method is that the simple dual-port blocks support frequencies
up to 1 GHz. The disadvantage is the doubling of the number of memory blocks
required to implement your memory.

Arria® 10 True Dual-Port Memory Implementation

Previous versions of the Quartus Prime Pro Edition software generate this true dual-
port memory structure for Arria® 10 devices.

myRarm
E ram_z2port_0
acdr a[s O]D address_a[4.0] address afa.o]
iF ddress_b{4.0] address_b{4.0)
addr_b[5.0] [ —
B :lk i[/ clock_a clock_a
N tack_b o i
ctk b [ elack_| clock b q a[7.0] q_al I‘ D a.a[7.0]
7..0] I
data_a[7. D]D data_a[7.0] data_a[7..0] b{7.0] q_b{7.0] D Q_b[7.0]
data_b[7..0] data b{7.0]
data_b[7.0] =
WE_EB Wren_a wren_a
wren b wren b
we_b[
(true_dual_port_ram_dual_clock_ram_2 port_161_216wh7a)

(true_dual_port_ram_dual_clock)

Dual Port, Dual Clock Memory Implementation

module true_dual_port_ram_dual_clock
#(parameter DATA_WIDTH=8, parameter ADDR_WIDTH=6)

input [(DATA_WIDTH-1):0] data_a, data_b,
input [(ADDR_WIDTH-1):0] addr_a, addr_b,
input we_a, we_b, clk_a, clk b,

output reg [(DATA_WIDTH-1):0] g_a, g_b
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// Declare the RAM variable
reg [DATA WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

always @ (posedge clk_a)
begin
// Port A
it (we_a)
begin
ram[addr_a] <= data_a;
q_a <= data_a;
end
else
begin
g_a <= ram[addr_a];
end
end

always @ (posedge clk_b)

begin
// Port B
if (we_b)
begin
ram[addr_b] <= data_b;
q_b <= data_b;
end
else
begin
q_b <= ram[addr_b];
end
end
endmodule

Synchronizing dual-port memory that uses different write clocks can be difficult.
Ensure that both ports do not simultaneously write to a given address. In many
designs the dual-port memory often performs a write operation on one of the ports,
followed by two read operations using both ports (1W2R). You can model this behavior
by using two simple dual-port memories. In simple dual-port memories, a write
operation always writes in both memories, while a read operation is port dependent.

Simple Dual-Port Memory Example

Using two simple dual-port memories can double the use of M20K blocks in the device.
However, this memory structure can perform at a frequency up to 1 GHz. This
frequency is not possible when using true dual-port memory with independent clocks
in Stratix 10 devices.
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Figure 57.

Example 9.

Simple Dual-Port Memory Implementation

myRam
E mem2
rdaddr_b[5.0°
rdaddr_b(5..0] [— oo Lk i .
dk_a[ > St LI [ qa.b[7.0]
Ik_b !
prid B wdata[7.0]
wdata[7.0] >
mem’
rdaddr_a[5..0) [t 0)
wraddr[5..0] [ 0.0 8209y q a[7.0]
we_a[ > we_a|
(simpleDual Part)

(dual_port_ram_dual_clock)

You can achieve similar frequency results by inferring simple dual-port memory in RTL,
rather than by instantiation in the GUI.

Simple Dual-Port RAM Inference

module simple_dual_port_ram with_SDPs
#(parameter DATA_WIDTH=8, parameter ADDR_WIDTH=6)
(

input [(DATA_WIDTH-1):0] wrdata,
input [(ADDR_WIDTH-1):0] wraddr, rdaddr,
input we_a, wrclock, rdclock,
output reg [(DATA_WIDTH-1):0] qgq_a
);

// Declare the RAM variable
reg [DATA_WIDTH-1:0] ram[2**ADDR_WIDTH-1:0];

always @ (posedge wrclock)

begin
// Port A is for writing only
if (we_a)
begin
ram[wraddr] <= wrdata;
end
end

always @ (posedge rdclock)
begin

// Port B is for reading only
begin

q_a <= ram[rdaddr];

end

end

endmodule
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Example 10. True Dual-Port RAM Behavior Emulation

module test (wrdata, wraddr, rdaddr_a, rdaddr_b,
clk_a, clk b, we_a, g_a, q_b);

input [7:0] wrdata;

input clk_a, clk b, we_a;

input [5:0] wraddr, rdaddr_a, rdaddr_b;
output [7:0] q_a, q_b;

simple_dual_port_ram with_SDPs myRaml (
-wrdata(wrdata),
-wraddr(wraddr),
.rdaddr(rdaddr_a),
-we_a(we_a),
-wrclock(clk_a), -rdclock(clk_b),
jq_a(q_a)

simple_dual_port_ram with_SDPs myRam2 (
-wrdata(wrdata),
-wraddr(wraddr),
.rdaddr(rdaddr_b),
-we_a(we_a),
-wrclock(clk_a), -rdclock(clk_a),
5q_a(q_b)

endmodule

Memory Mixed Port Width Ratio Limits

Stratix 10 device block RAMs enable clocks speeds of up to 1GHz. The new RAM block
design is more restrictive with respect to use of mixed ports data width. Stratix 10
device block RAMs do not support 1/32, 1/16, or 1/8 mixed port ratios. The only valid
ratios are 1, Y2, and ¥4 mixed port ratios. The generates an error message for
implementation of invalid mixed port ratios.

When migrating a design that uses invalid port width ratios for Stratix 10 devices,
modify the RTL to create the desired ratio.

Figure 58. Dual-Port Memory with Invalid 1/8 Mixed Port Ratio

mem

=

ram_2port_0
data] 7.0
rdaddress{"l O} [ daral7.0 data[?7.0]
rdclock [ I rdaddress[1_0] rdaddress[1..0]) q[63.0]
wraddress[4.0] [ I rdelock rdclack ql63..0] ql63.0]
wrelock [ | wraddress(4.0 wraddress(4..0)
e ] wrelock wrclock
wren wren|
(myMemory_ram_2port_161_mip4ppy)

(myMemory)
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Figure 59.

Figure 60.

To create a functionally equivalent design for Stratix 10 devices, create and combine
smaller memories with valid mixed port width ratios. For example, the following steps
implement a mixed port width ratio:

1. Create two memories with ¥4 mixed port width ratio by instantiating the 2-Ports
memory IP core from the IP Catalog.

2. Define write enable logic to ping-pong writing between the two memories.
3. Interleave the output of the memories to rebuild a 1/8 ratio output.

1/8 Width Ratio Example

This example shows the interleaving of two memories and the write logic. The chosen
write logic uses the least significant bit of the write address to decide which memory
to write. Even addresses write in memory mem_A, odd addresses write in memory

mem_B.

tputie ramler

aaa7.0)
rdaddress{3. 0]
s aAfhi b qiecrmtiesth 6] q
I LA D [ﬂ q]
“clo{hD fdescrambberny
wraddress 0] [
e S ele ot
0 wradreus, i .
O - _—
[memonSelea)

(rerytiemond

Because of the scheme that controls writing to the memories, carefully reconstruct the
full 64-bit output during a write. You must account for the interleaving of the
individual 8-bit words in the two memories.

Memory Output Descrambling Example

This example shows the descrambled output when attempting to read at address OhO.

Mem_ B Mem_A
31 2 0

VL AN N IS |

63 0

The following RTL examples implement the extra stage to descramble the data from
memory on the read side.
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Example 11. Top-Level Descramble RTL Code

module test
parameter WR_DATA_WIDTH = 8,

#(

)(

data, wraddress,
wrclock, rdclock, q

parameter RD_DATA_WIDTH
parameter WR_DEPTH = 64,
parameter RD_DEPTH = 4,
parameter WR_ADDR_WIDTH
parameter RD_ADDR_WIDTH

input [WR_DATA_WIDTH-1:0]
input [WR_ADDR_WIDTH-1:0]
input [RD_ADDR_WIDTH-1:0]

input wren;

input wrclock;

input rdclock;

output [RD_DATA_WIDTH-1:0]

wire wrena, wrenb;
wire [(RD_DATA_WIDTH/2)-1:0] gq_A, qg_B;

memorySelect memWriteSelect (

);

rdaddress,

64,

6,
4

wren,

data;
wraddress;
rdaddress;

q;

-wraddress_Isb(wraddress[0]),

-wren(wren),
-wrena(wrena),
-wrenb(wrenb)

myMemory mem_A (

)

.data(data),
-wraddress(wraddress),
.rdaddress(rdaddress),
-wren(wrena),
-wrclock(wrclock),
-rdclock(rdclock),
-a(q_A)

myMemory mem_B (

)

.data(data),
-wraddress(wraddress),
.rdaddress(rdaddress),
-wren(wrenb),
-wrclock(wrclock),
-rdclock(rdclock),

-q(a_B)

descrambler #(

-WR_WIDTH(WR_DATA_WIDTH),

-RD_WIDTHCRD_DATA_WIDTH)

) outputDescrambler (

-gA(g_A),
-qB(q_B),
.gDescrambled(q)
)
endmodule
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Example 12. Supporting RTL Code

module memorySelect (wraddress_Isb, wren, wrena, wrenb);
input wraddress_Isb;
input wren;
output wrena, wrenb;

assign wrena = !wraddress_Isb && wren;
assign wrenb = wraddress_Isb && wren;
endmodule

module descrambler #(
parameter WR_WIDTH
parameter RD_WIDTH

) (

8,
64

input [(RD_WIDTH/2)-1 : 0] gA,
input [(RD_WIDTH/2)-1 : 0] gB,
output [RD_WIDTH:0] gDescrambled

genvar i;

generate
for (i=WR_WIDTH*2; i<=RD_WIDTH; i += WR_WIDTH*2) begin: descramble

assign gDescrambled[i-WR_WIDTH-1:i-(WR_WIDTH*2)] = gA[(i/2)-1:(i/2)-
WR_WIDTH] ;

assign gDescrambled[i-1:i-WR_WIDTH] = gB[(i/2)-1:(i/2)-WR_WIDTH];

end

endgenerate

endmodule

2.4.2.8.3 Unregistered RAM Outputs

To achieve the highest performance, register the output of memory blocks before
using the data in any combinational logic. Driving combinational logic directly with
unregistered memory outputs can result in a critical chain characterized by insufficient
registers.

You can unknowingly use unregistered memory outputs followed by combinational
logic if you implement a RAM using the read-during-write new data mode. This mode
is implemented with soft logic outside the memory block that compares the read and
write addresses. This mode muxes the write data straight to the output. If you want to
achieve the highest performance, do not use the read-during-write new data mode.

2.4.2.9 DSP Blocks

DSP blocks support frequencies up to 1 GHz. However, you must use all of the
registers, including the input register, two stages of pipeline registers, and the output
register.

2.4.2.10 General Logic

Avoid using one-line logic functions that while structurally sound, generate multiple
levels of logic. The only exception to this is adding a couple of pipeline registers on
either side, so that Hyper-Retiming can retime through the cloud of logic.
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2.4.2.11 Modulus and Division

The modulus and division operators are costly in terms of device area and speed
performance, unless they use powers of two. If possible, use an implementation that
avoids a modulus or division operator. The Round Robin Scheduler topic shows the
replacement of a modulus operator with a simple shift, resulting in a dramatic
performance increase.

Related Links
Round Robin Scheduler on page 108

2.4.2.12 Resets

Use resets for circuits with loops in monitoring logic to detect erroneous conditions,
and pipeline the reset condition.

2.4.2.13 Hardware Re-use

To resolve loops caused by hardware re-use, unroll the loops.

2.4.2.14 Algorithmic Requirements

These loops can be difficult to improve, but can sometimes benefit from a combination
of optimization techniques described in the General Optimization Techniques section.

Related Links

General Optimization Techniques on page 28

2.4.2.15 FIFOs

FIFOs always contain loops. There are efficient methods to implement the internal
FIFO logic that provide excellent performance.

One feature of some FIFOs is a bypass mode where data bypasses the internal
memory completely when the FIFO is empty. If you implement this mode in any of
your FIFOs, be aware of the possible performance limitations inherent in unregistered
memory outputs.

Related Links
Unregistered RAM Outputs on page 53
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3 Compiling Stratix 10 Designs

This chapter describes how to use the Quartus Prime Compiler to take full advantage
of the Intel HyperFlex FPGA architecture in Stratix 10 devices.

Hyper-Aware Design Flow

Use the Hyper-Aware design flow to shorten design cycles and optimize performance.
The Hyper-Aware design flow combines automated register retiming, with
implementation of targeted timing closure recommendations (Fast Forward
compilation), to maximize use of Hyper-Registers and drive the highest performance
for Stratix 10 designs.

Figure 61. Hyper-Aware Design Flow

optimize optimize optimize optimize optimize optimize
| Eary N [ Finalize
Synthesis || Plan Ple Place Route |- S »| TCH
$

*Stratix 10
LN Tt Forward*
RTL

(Hyper-Retiming)

Register Retiming

A key innovation of the Stratix 10 architecture is the addition of multiple Hyper-
Registers in every routing segment and block input. Maximizing the use of Hyper-
Registers improves design performance. The prevalence of Hyper-Registers improves
balance of time delays between registers and mitigates critical path delays. The
Compiler's Retime stage moves registers out of ALMs and retimes them into Hyper-
Registers, wherever advantageous. Register retiming runs automatically during the
Fitter, requires minimal effort, and can result in significant performance improvement.
Following retiming, the Finalize stage corrects connections with hold violations.

Fast Forward Compilation

If you require optimization beyond simple register retiming, run Fast Forward
compilation to generate timing closure recommendations that break key performance
bottlenecks that prevent further movement into Hyper-Registers. For example, Fast
Forward recommends removing specific retiming restrictions that prevent further
retiming into Hyper-Registers. Fast Forward compilation shows precisely where to
make the most impact with RTL changes, and reports the predictive performance
benefits you can expect from removing restrictions and retiming into Hyper-Registers
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(Hyper-Retiming). The Fitter does not automatically retime registers across RAM and
DSP blocks. However, Fast Forward analysis shows the potential performance benefit
from this optimization.

Figure 62. Hyper-Register Architecture
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Fast-Forward compilation identifies the best location to add pipeline stages (Hyper-
Pipelining), and the expected performance benefit in each case. After you modify the
RTL to place pipeline stages at the boundaries of each clock domain, the Retime
stage automatically places the registers within the clock domain at the optimal
locations to maximize performance. Implement the recommendations in RTL to
achieve similar results. After implementing any changes, re-run the Retime stage
until the results meet performance and timing requirements.

Table 4. Optimization Steps

Optimization Step Technique Description

Step 1 Register Retiming Retime stage moves existing registers into Hyper-Registers.

Step 2 Fast Forward Compile Compiler generates design-specific timing closure recommendations
and predicts performance improvement with removal of all barriers
to Hyper-Registers (Hyper-Retiming).

Step 3 Hyper-Pipelining Use Fast Forward compilation to identify where to add new registers
and pipeline stages in RTL.

Step 4 Hyper-Optimization Design optimization beyond Hyper-Retiming and Hyper-Pipelining,
such as restructuring loops, removing control logic limits, and
reducing the delay along long paths.

Note: The Stratix 10 Hyper-Optimization Advisor provides step-by-step instructions to run

Fast Forward compilation and implement Hyper-Optimization. Click Tools 00 Advisors
0 Stratix 10 Hyper-Optimization Advisor to view advice.

3.1 Running the Hyper-Aware Design Flow

The Hyper-Aware design flow combines register retiming with Fast Forward
Compilation to maximize use of available Stratix 10 Hyper-Registers.
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Figure 63. Hyper-Aware Design Flow
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The Hyper-Aware design flow includes the following high-level steps this chapter
covers in detail:

1. Run the Retime stage during the Fitter to automatically retime ALM registers into
Hyper-Registers.

Review Retiming Results in the Compilation Report.
If you require further performance optimization, run Fast Forward compilation.
Review Fast Forward timing closure recommendations.

Implement appropriate Fast Forward recommendations in your RTL.

ok wN

Recompile the design through the Retime stage.

Related Links

e Step 1: Run Register Retiming on page 58

e Step 2: Review Retiming Results on page 60

e Step 3: Run Fast Forward Compile and Hyper-Retiming on page 63
e Step 4: Review Hyper-Retiming Results on page 65
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e Step 5: Implement Fast Forward Recommendations on page 68

3.1.1 Step 1: Run Register Retiming

Register retiming improves design performance by moving registers out of ALMs and
retimes them into Hyper-Registers in the Stratix 10 device interconnect.

The Fitter runs the Retime stage automatically following place and route when you
target a Stratix 10 device. Alternatively, start or stop the individual Retime stage in
the Compilation Dashboard. After running register retiming, view the Fitter reports to
optimize remaining critical paths.

To run register retiming:

1. Create or open a Quartus Prime project that is ready for design synthesis and
fitting.

2. To run register retiming, click Retime on the Compilation Dashboard. The
Compiler runs prerequisite stages automatically, as needed. The Compiler
generates detailed reports and timing analysis data for each stage. Click the
Report or TimeQuest icons to review results of each stage. Rerun any stage to
apply any setting or design changes.

3. If register retiming achieves all performance goals for your design, proceed to
Fitter (Finalize) and TimeQuest timing analysis stages of compilation. If your
design requires further optimization, run Fast Forward Timing Closure
Recommendations.

Figure 64. Retiming Stage in Compilation Dashboard
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Table 5.

Fitter Stage Commands

Command Description

Fitter (Implement) Runs the Plan, Early Place, Place, Route and Retime stages. Click the adjacent

TimeQuest icon after this stage to analyze the subset of timing corners needed for
timing closure.

Start Fitter (Plan) Loads synthesized periphery placement data and constraints, and assigns periphery

elements to device I/0 resources. After this stage, you can run post-Plan timing
analysis to verify timing constraints, check periphery timing, and validate cross-
clock timing windows. This command creates the Planned snapshot.

Start Fitter (Early Place) Begins assigning core design logic to device resources. After this stage, the Chip

Planner can display initial high-level placement of design elements. Use this
information to guide your floorplanning decisions. This command creates the Early
Placed snapshot. Early Place does not run during the full compilation flow.

Start Fitter (Place) Completes assignment of core design logic placement to device resources. This

command creates the Placed snapshot.

Start Fitter (Route) Performs core routing. This stage creates a fully routed design to validate delay

chain settings and analyze routing resources. After this stage, perform detailed
setup and hold timing closure in The TimeQuest Timing Analyzer and view routing
congestion via the Chip Planner. This command creates the Routed snapshot.

Start Fitter (Retime) Retimes existing registers in the design into Hyper-Registers to increase

performance by removing retiming restrictions and eliminate critical paths. The
Compiler may report hold violations for short paths following the Retime stage. The
Fitter identifies and corrects the short paths with hold violations during the Fitter
(Finalize) stage by adding routing wire along the paths.

Start Fitter (Finalize) Finalizes the place and route process after timing closure. This command creates

the Final snapshot.

The Fitter also runs post-route fix-up to correct any short path hold violations
remaining from retiming.

3.1.1.1 Prevent Register Retiming

Example 13.

Enable the Prevent register retiming option if you want to globally prevent
automatic retiming of registers for design performance improvement. When disabled,
the Compiler automatically performs register retiming optimizations that move
combinational logic across register boundaries. The Compiler maintains the overall
logic of the design component, and also balances the datapath delays between each
register. Optionally, assign Allow Register Retiming to any design entity or instance
to override Prevent register retiming for specific portions of the design. Click
Assignments 0 Assignment Editor to specify entity- and instance-level
assignments, or use the following syntax to make the assignment in the .qs¥ directly.

Disable register retiming for entity abc
set_global_assignment —name ALLOW_REGISTER_RETIMING ON

set_instance_assignment —name ALLOW_REGISTER_RETIMING OFF —to ‘“abc|”

set_instance_assignment —name ALLOW_REGISTER_RETIMING ON —to “abc|def]|”
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Example 14. Disable register retiming for the whole design, except for registers in entity
abc

set_global_assignment —name ALLOW_REGISTER_RETIMING OFF

set_instance_assignment —name ALLOW_REGISTER_RETIMING ON —to “‘abc]|”

set_instance_assignment —name ALLOW_REGISTER_RETIMING OFF —to “abc|def|”

3.1.1.2 Preserve Registers During Synthesis

Table 6.

Quartus Prime synthesis minimizes gate count, merges redundant logic, and ensures
efficient use of device resources. If you need to preserve specific registers through
synthesis processing, you can specify any of the following entity-level assignments.
Use Preserve Resisters in Synthesis or Preserve Fan-Out Free Register Node to
allow Fitter optimization of the preserved registers. Preserve Resisters restricts
Fitter optimization of the preserved registers. Specify synthesis preservation
assignments by clicking Assignments [ Assignment Editor, in the .gsfT file, or as

synthesis attributes in your RTL.

Synthesis Preserve Options

Assignment

Description

Allows Fitter
Optimization?

Assignment Syntax

Preserve Prevents removal of registers during | Yes PRESERVE_REGISTER_SYN_ONLY ON]Off

Resisters in synthesis. This settings does not -to <entity> (.gsf)

Synthesis affect retiming or other

optimizations in the Fitter. preserve_syn_only or .

syn_preservesyn_only (synthesis
attributes)

Preserve Prevents removal of assigned Yes PRESERVE_REGISTER_FANOUT_FREE_NODE

Fan-Out Free | registers without fan-out during ONJOFf -to <entity> (.gsf)

Register synthesis. : :

Node no_prune on (synthesis attribute)

Preserve Prevents removal and sequential No PRESERVE_REGISTER ON|Off -to

Resisters optimization of assigned registers

during synthesis. Sequential netlist
optimizations can eliminate
redundant registers and registers
with constant drivers.

<entity> (.qgsf)
preserve, syn_preserve, or keep on
(synthesis attributes)

3.1.2 Step 2: Review Retiming Results

The Fitter generates detailed reports showing the results of the Retime stage. Follow
these steps to review the results and make additional performance improvements with
register retiming.

1.

To open the Retiming Limit Details report, click the Report icon for the Retime
stage in the Compilation Dashboard. The Retiming Limit Details lists the
number of registers moved, the path(s) involved, and the limiting reason that

prevents further retiming.

To further optimize, resolve any Limiting Reason in your design and rerun the

Retime stage, as necessary.

If register retiming achieves all performance goals for your design, proceed to
Fitter (Finalize) and TimeQuest Timing Analysis stages of compilation.

If your design requires further optimization, run Fast Forward compilation.
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Table 7. Retiming Limit Details Report Data

Report Data

Description

Clock Transfer

Lists each clock domain in your design. Click the domain to display data about each entry.

Limiting Reason

Specifies the design condition(s) that prevent further register retiming improvement, such as

any of the following conditions:

+ Insufficient Registers—indicates insufficient quantity of registers at either end of the
chain for retiming. Adding more registers can improve performance.

¢ Short Path/Long Path—indicates that the critical chain has dependent paths with
conflicting characteristics. For example, one path could improve performance with more
registers, and another path has no place for additional registers.

¢ Path Limit—indicates that there are no further Hyper-Register locations available on the
critical path, or the design reached a performance limit of the current place and route.

¢ Loops—indicates a feedback path in a circuit. When the critical chain includes a feedback
loop, retiming cannot change the number of registers in the loop without changing
functionality. The Compiler can retime around the loop without changing functionality, but
additional registers cannot be put in the loop.

Critical Chain Details

Lists register timing path associated with the retiming limitations. Right-click any path to
Locate Critical Chain in Technology Map Viewer.

Figure 65. Retiming Limit Details
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Retiming Limit Summary

|
Clock Transfer Limiting Reason Recommendation

11 REEEEETFIRE S Insufficient Registers  ‘See the Fast Forward Timing Closure R..RTL changes and estimated performance |

Critical Chain Summary for Clock Domain clk

Critical Chain Details

Path Info Register RegisterID Element

1 Retiming Restriction  REG Ll window_contol|window_column_counter[7]~regORTM

2 LongPath (Critical) window_contol|window_column_counter[7]~regORTM|q

3 LongPath (Critical) window_contol|window_column_counter[7]~regORTM~la_lab/laboutb(8]

4 Long Path (Critical) window_contol|window_column_cou. gORTM~_LAB_RE_X227_Y293_NO_I122
; 5 Long Path (Critical) window_contol|window_column_cou..L_INTERCONNECT_X227_Y293_NO_I21
; 6 LongPath (Critical) Bypassed Hyper-Register window_contol|window_column_coun. regORTM~_LAB_RE_X227_Y293_N0_I66

7 LongPRath (Critical) window_contol|reduce_or_0|datac

6 * Long Path (Critical) window_contol|reduce_or_0|combout

9 LongPath (Critical) window_contol|reduce_or_0~la_lab/laboutb[13]

10 Long Path (Critical) window_contol|reduce_or_0~LAB_RE_X227_Y293_NO_127

11 LongPath (Critical)  Bypassed Hyper-Register window_contol |reduce_or_0~R2_X228_¥293 NO_|44

12 Long Path (Critical) window_contol|reduce_or_0~LOCAL_INTERCONNECT_X229_Y293 NO_I26

13 Long Path (Critical) Bypassed Hyper-Register window_contol|reduce_or_0~LAB_RE_X229 Y293 NO_I3

14 Long Path (Critical) window_contol|add_4~1|dataa

15 Long Path (Critical) window_contol|add_4~41|cout

16 Long Path (Critical) window_contol|add_4~46|cin

17 Long Path (Critical) window_contol|add_4~46|sumout

18 Long Path (Critical) window_contol|raddr_c[9]|d

19 | Retiming Restriction | REG (required) #2 window_contol |raddr_c[9]

100% 00:02:43

Note: The Compiler may report hold violations for short paths following the Retime
stage. The Fitter identifies and corrects the short paths with hold violations
during the Fitter (Finalize) stage by adding routing wire along the paths.

3.1.2.1 Locate Critical Chains

The Retiming Limit Details reports the design path(s) that limit further register

retiming. Right-click any path to locate to the path in the Technology Map Viewer -
Post-fitting view. This viewer displays a schematic representation of the complete

design after place, route, and register retiming. To view the retimed netlist in the

Technology Map Viewer, follow these steps:

Intel® Stratix® 10 High-Performance Design Handbook
61




®
l n tEI 3 Compiling Stratix 10 Designs

1. To open the Retiming Limit Details report, click the Report icon next to the
Retime stage in the Compilation Dashboard.

2. Right-click any path in the Retiming Limit Details report and click Locate
Critical Chain in Technology Map Viewer. The netlist displays as a schematic
in the Technology Map Viewer.

Figure 66. Technology Map Viewer

4 () Technology Map Viewer - itting - 1510_t - median - [retimed] <@sj-iccf0198> = ©E ®
File Edit View Tools Window Help Search Intel FPGA (]
edDE 0 k@ ¥r=eonn Page: | 10f1 %

Netlist Navigator M@ A median1 X A median2 X +
@@ Instances
@ 4 Primitives
(- Ports
(= Input
= clk
= clk~pad
= _ALTERA_AS_CLK~
= _ALTERA_AS_DATAO~
= ~ALTERA_AS_nCSOOALTERA_MSELO~
= ™ ~ALTERA_MSEL[1.2]~
= ~ALTERA_MSEL1~
™ ~ALTERA_MSEL2~

-]
[ v
100%  00:00:38

Schematic View
of Design Netlist

Register retiming moves the register banks forward into Hyper-Registers.

Figure 67. Post-Fit Viewer After Retiming
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3.1.3 Step 3: Run Fast Forward Compile and Hyper-Retiming

Figure 68.

When you run Fast Forward compilation, the Compiler predictively removes signals
from registers to allow mobility within in the netlist for subsequent retiming. Fast
Forward compilation generates design-specific timing closure recommendations, and
predicts maximum performance with removal of all timing restrictions. After you
complete Fast Forward explorations, determine which recommendations you can
implement to provide the most benefit. Implement appropriate recommendations in
your RTL, and recompile the design to realize the performance levels that Fast Forward
reports.

Running Fast Forward Compilation

Compilation Flow
P Compile Design

P IP Generation

P Analysis & Synthesis ot
P Fitter
B Fitter implement)
P Plan g @
Fast Forward s .
-t Early Place v @
Flow g ;
P Place o B
P Route < @
P Retime it @
S P (Fast Forward Timing Closure Recommendations -
P Fitter (Finalize) o &

% TimeQuest Timing Analysis (Signoff)

P Power Analysis

P Assembler (Generate programming files)
P EDA Netlist Writer

To generate Fast Forward timing closure recommendations, follow these steps:

1.

On the Compilation Dashboard, click Fast Forward Timing Closure
Recommendations. The Compiler runs prerequisite synthesis or Fitter stages
automatically, as needed, and generates timing closure recommendations in the
Compilation Report.

View timing closure recommendations in the Compilation Report to evaluate
design performance and implement key RTL performance improvements.

Optionally, specify any of the following any of the following options if you want to
automate or refine Fast Forward analysis:

e If you want to run Fast Forward compilation during each full compilation, click
Assignments [ Settings [ Compiler Settings 0 HyperFlex and enable
Run Fast Forward Timing Closure Recommendations during
compilation.

e If you want to modify how Fast Forward compilation interprets specific I/O and
block types, click Assignments [0 Settings 0 Compiler Settings [
HyperFlex 0 Advanced Settings.
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Figure 69. HyperFlex Settings

Run Fast Forward
During Compilation

Category.

= O Settings - chiptrip_nf <@sj-slscf014>

Device/Board.. I

(€

-~ General

~Files
Libraries

1P Settings

Assembler

“IP Catalog Search Locations | gnabled Hyper-Retimer (Hyper Aware CAD and retiming optimization)
Design Templates

£} Operating Settings and Conditic +| Run Fast Forward Timing Closure Recommendations during compilation
- Voltage
i Temperature Fast Forward Timing Closure Recommendations analyzes your design and provides

Compilation Process Settings
EDA Tool Settings To customize exploration settings globally, open the Advanced Settings dialog. For more
EH- Compiler Settings information about Advanced settings, please open the Stratix 10 Hyper-Optimization Advisor.

YROCRpaL Advanced Settings
i~ Verilog HDL Input B2

i Default Parameters
HyperFlex
TimeQuest Timing Analyzer

~ SignalTap Il Logic Analyzer
~Logic Analyzer Interface
PowerPlay Power Analyzer Sett

HyperFlex

Specify HyperFlex optimization settings for the Compiler. These settings control the optimization
algorithms that will be performed throughout design compilation

recommendations for how to restructure your RTL to overcome performance bottlenecks

Fast Forward
Advanced Options

3.1.3.1 Advanced HyperFlex Settings

The Advanced HyperFlex Settings control how Fast Forward Compilation analyzes
and reports results for specific logical structures in a Stratix 10 design. To access the
settings, click Assignments O Settings 0 HyperFlex 0 Advanced Settings.

Table 8. Advanced HyperFlex Settings

Option

Description

Fast Forward Compile
Asynchronous Clears

Specifies how Fast Forward analysis accounts for registers with asynchronous clear signals.

The options are:

e Auto—the Compiler assumes asynchronous clears are asynchronous until they limit
timing performance during Fast Forward Compilation, at which point they are assumed
removed

* Preserve—the Compiler never assumes that it can remove or convert asynchronous
clears for Fast Forward analysis.

Fast Forward Compile
Fully Registered DSP
Blocks

Specifies how Fast Forward analysis accounts for DSP blocks that limit performance. Enable
this option to generate results as if all DSP blocks are fully registered.

Fast Forward Compile
Fully Registered RAM
Blocks

Specifies how Fast Forward analysis accounts for RAM blocks that limit performance. Enable
this option to analyze the blocks as fully registered.

Fast Forward Compile
Maximum Additional
Pipeline Stages

Specifies the maximum number of pipeline stages that Fast Forward compilation explores.

Fast Forward Compile
User Preserve Directives

Specifies how Fast Forward compilation accounts for restrictions from user-preserve
directives.
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3.1.4 Step 4: Review Hyper-Retiming Results

After running Fast Forward Compilation, review the reports to determine which
recommendations are appropriate and practical for your design functionality and
performance goals.

3.1.4.1 Clock Fmax Summary Report

The Clock Fmax Summary reports the current f,5x and potential performance
achievable for each clock domain after Hyper-Retiming, Hyper-Pipelining, and Hyper-
Optimization steps. Review the Clock Fmax Summary data to determine whether
each potential performance improvement warrants further investigation and potential
optimization of design RTL.

Figure 70. Current and Potential Performance in Clock Fmax Summary

Predicts Optimized Performance After
Hyper-Retiming, Hyper-Pipelining, and Hyper-Optimization

Clock Fmax Summary
| & <c<Filter>
Clock Name Frnax Achieved with Hyper-Retiming Achieved with Hyper-Pipelining Achieved with Hyper-Optimization  Restricted Fm

1 ;clock 345 MHz 904 MHz 004 MHz 904 MHz 904 MHz

&3] )
FastForward Compilation enabled: Post-place & route results are analyzed to provide step-by-step recommendations for suggested RTL .
changes and show the estimated performance improvement from making these changes

- Fmax/Slack: Estimated performance from retiming existing registers in the design -l

3.1.4.2 Fast Forward Details Report

The Fast Forward Details report recommends the design modifications necessary to
achieve Fast Forward compilation performance levels. Some recommendations may be
functionally impossible or impractical for your design. Consider which
recommendations you can implement in RTL to achieve similar performance
improvement. Click on any optimization Step to view the implementation details and
performance calculations for that step.
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Figure 71. Fast-Forward Details Report
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Table 9. Fast Forward Details Report Data

Report Field Description

Step Displays the pre-optimized Base Performance fyax, the recommended Fast
Forward optimization steps, and the Fast Forward Limit critical path that
prevents further optimization.

Fast Forward Optimizations Analyzed Summarizes the optimizations necessary to implement each optimization

step.
Estimated Fmax Specifies the potential fyax performance if you implement all Fast Forward
optimization steps.
Optimizations Analyzed For Fast Lists design recommendations hierarchically for the selected Step. Click the
Forward Step text to expand the report and view the clock domain, the affected module,

and the bus and bits that require modification.

Optimizations Analyzed (Cumulative) Accumulated list of all design changes necessary to reach the selected Step.

Critical Chain at Fast Forward Limit Displays information about any path that continues to limit Hyper-Retiming
even after application of all Fast Forward steps. The critical chain is any path
that limits further Hyper-Retiming. Click the Fast Forward Limit step to
display this field.

Recommendations for Critical Chain Lists register timing path associated with the retiming limitations. Right-click
any path to Locate Critical Chain in Fast Forward Viewer.

Right-click any path to locate to the critical chain in the Fast Forward Viewer. The Fast
Forward Viewer displays a predictive representation of the complete design, after
implementation of all Fast Forward recommendations.
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Figure 72.

Recommendations for Critical Chain
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3.1.5 Step 5: Implement Fast Forward Recommendations

Implement the Fast Forward timing closure recommendations in your design RTL and
rerun the Retime stage to realize the predictive performance gains.

The amount and type of changes that you implement depends on your performance
goals. For example, if you can achieve the target fyax with simple asynchronous clear
removal or conversion, you can stop design optimization after making those changes.
However, if you require additional performance, implement more Fast Forward
recommendations, such as any of the following techniques:

e Remove limitations of control logic, such as long feedback loops and state
machines.

e Restructure logic to use functionally equivalent feed-forward or pre-compute
paths, rather than long combinatorial feedback path.

¢ Reduce the delay of ‘Long Paths’ in the chain. Use standard timing closure
techniques to reduce delay. Excessive combinational logic, sub-optimal placement,
and routing congestion cause delay on paths.

¢ Insert more pipeline stages in ‘Long Paths’ in the chain. Long paths have the most
delay between registers in the critical chain.

e Increase the delay (or add pipeline stages to ‘Short Paths’ in the chain).

Explore performance and implement the RTL changes to your code until you reach the
desired performance target.

3.1.5.1 Interpreting Critical Chain Reports

Figure 75.

The Compiler identifies the register chains in your design that limit further
optimization through Hyper-Retiming. The Compiler refers to these related register-to-
register paths as a critical chain. The fyax of the critical chain and its associated clock
domain is limited by the average delay of a register-to-register path, and quantization
delays of indivisible circuit elements like routing wires.

The Retiming Limit Details report the limiting reasons preventing further retiming,
and the registers and combinational nodes that comprise the chain. The Fast Forward
recommendations list the steps you can take to remove critical chains and enable
additional register retiming.

Sample Critical Chain

In this figure the red line represents a same critical chain. Timing restrictions prevent
register A from retiming forward. Timing restrictions also prevent register B from
retiming backwards. A loop occurs when register A and register B are the same

register.
Ve N T BT
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Fast Forward recommendations include:

e Reduce the delay of ‘Long Paths’ in the chain. Use standard timing closure
techniques to reduce delay, but it might be more fruitful to look at other
recommendations too. Paths can have delay from too much combinational logic, or
from sub-optimal placement, or routing congestion, among other reasons.

e Insert more pipeline stages in ‘Long Paths’ in the chain. Long paths are the parts
of the critical chain that have the most delay between registers.

e Increase the delay (or add pipeline stages to ‘Short Paths’ in the chain).
Particular registers in critical chains can limit performance for many other reasons.

The Compiler classifies the following types of reasons that limit further optimization by
retiming:

e Insufficient Registers

e Loop
e Short path/long path
e Path limit

After understanding why a particular critical chain limits your design’s performance,
you can then make RTL changes to eliminate that bottleneck and increase
performance.

3.1.5.1.1 Insufficient Registers

When registers at neither end of the chain can be retimed, and adding more registers
can improve performance, the limiting reason reported is Insufficient Registers.

Figure 76. Insufficient Registers Reported as Limiting Reason

Retiming Limit Details

| Retiming Limit Summary
Clock Transfer Limiting Reason Recommendation |
|1 Clock Domain clock Insufficient Registers  [See the Fast Forward Timing Closure R..RTL change|

2  Transfer from clock to Top-level Outputports  [Insufficient Registers — Selaeh =0 o=t Sate a0 = g 8 BT (ST =8 S e i I R |

[l I D)

Critical Chain Summary for Transfer from clock to Top-level Qutput ports

i ritical Chain Details
Path Info Register Register ID Element =
1 | Retiming Restriction | PIN | dir{0]
2 Long Path (Critical) auto|dir[0]~input|i |
3 Long Path (Critical) auto|dir[0]~input|o
4 Long Path (Critical) auto|dir[0]~input~io48tilelvds_0fs2_3_0_ core_perip!
5 Long Path (Critical) | auto|dir{0]~input~_10_48_LVDS_TILE_RE_X52_YO_NO |
6 Long Path (Critical) | auto|dir[0]~input~_REDMUX_X51_Y2_NO_I136
7 Long Path (Critical) auto|dir[0]~input~_HIO_BUFFER_X51_Y2_NO_I76
8 Long Path (Critical) Bypassed Hyper-Register auto|dir{0]~input~_R4_X49_Y2_NO_I57 =

[ = D

Insufficient Registers Example

The following screenshots show the relevant parts of the Retiming Limit Details report
and the logic contained in the critical chain.

The Retiming Limit Details report indicates that the performance of the clock domain
named clKk fails to meet its timing requirement of 1ns period (1GHz fyax) with a slack
of -1.311ns, corresponding to a fyax of 432.7 MHz.
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Figure 77. Retiming Limit Details

Retiming Limit Summary
Clock Transfer Umiting Reason Recommendation
1 | Clock Domain clock Insufficient Registers  See the Fast Forward Timing Closure R_RTL changes and estimate|

2 Transfer from clock to Top-level Qutputports  Insufficient Registers  See the Fast Forward Timing Closure R_RTL changes and estimate|

Ll | B Y

The circuit has an inefficient crossbar switch implemented with one stage of input
registers, one stage of output registers, and purely combinational logic to route the
signals. The input and output registers have asynchronous resets. Because the
multiplexer in the crossbar is not pipelined, the implementation is inefficient and the
performance is limited.

Figure 78. Critical Chain in Post-Fit Technology Map Viewer

The critical chain goes from the input register, through a combinational logic cloud, to
the output register. The critical chain contains only one register-to-register path.
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In the following figure, line 1 shows a timing restriction in the Path Info column. Line
37 also lists a retiming restriction. The asynchronous resets on the two registers cause
the retiming restrictions.
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Figure 79. Critical Chain with Insufficient Registers Reported During Hyper-Retiming

Rewming Limit Summary |
Clock Transter Limitng Reason Slack Relasonship
1 Clock Domain clk  Insufficient Registers -1 311 1000

Critical Chain Summary for Clock Domain clk

Cencal Chain ot Limil | Recommendasons tor Crivcal Chain |

Paih Info Register Jain Blement
1 Retming Resticion | REG {requined) #1 | in_reg[33]{0]
2 Long Pam (Crscal) an_reg[33][0]lq
3 Long Pam (Crecal) in_reg[33][0]-la_miablabour{3]
4 Long Pam (Crscal) @n_reg[33|[0]-LAB_RE_X96_Y126_NO_I93
§ Long Pam (Cracal)  bypassed Hyper-Register din_reg[22|[0]-R3_X93_Y126_N0_i18
& |Long Pam (Criscal) | bypassed Hyper-Register ain_req[33[[0]-C4_X94_Y127_NO_IL8
7 Long Pam (Cracal) | bypassed Hyper-Register @n_reg[33|[0]-C4_X04_YL3IL_NO_IL8
8 Long Pam (Crecal)  bypassed Hyper-Register din_reg[3Z|[0]-C4_X84_Y135_NO_ILE
9 Long Pam (Cracal) | bypassed Hyper-Register din_reg[33][0]-C4_X$4_Y136_NO_IL8
10 Long Pam (Cracal) | bypassed Hyper-Register an_reg[33][0]-R3_X92_Y139_N0_I18
11 Long Path (Cracal)  bypassed Hyper-Regisier n_reg[33][0]-R3_X90_Y139_N0_IL8
12 Long Pam (Crucal)  bypassed Hyper-Regiser in_reg[3|[0]-C4_X91_¥135_NO_I35
13 Long Pam (Crscal) | bypassed Hyper-Register din_teg[33][0]-LOCAL_INTERCONNECT_X92_Y138_NO_139
14 Long Pam (Cracal) dn_reg[33][0]-LAB_RE_X92_Y138_N0_I54
15 Long Pam (Crecal)  bypassed Hyper-Regiser [ 76] param_mux|Mu:x0 - B5jdatal
16 Long Pam (Cracal) mux[76] param_mux|Mux0 - B5jcomibout
17 Long Pam (Cracal) pasam_mue | 78] param_muxjMuxd -8%-ia_miablabouty|L3]
18 Long Pam (Cracal) param_mux mux| 76] param_muxMux-85-_LAB_RE_X92_Y138_N0_IL23
19 Long Pam (Cracal) | bypassed Hyper-Regiser param_muxmux{76] param_muxiux0-85-_LOCAL_INTERCONNECT_X9L_Y138_NO_M&
20 Long Pam (Crical) | bypassed Hyper-Regiser pasam_mux mux{76] param_muhux0-85-_LAB_RE_X91_Y¥138_ND_I3
21 Long Pam (Cracal) ki 7] param_muxjhuxd -1 7jdatab
22 Long Pam (Crtcal) K[ 76] param_mux|Muxd -1 Ticombout
23 Long Pam (Crecal) param_mucmux{76] param_muxihuxd-17-1a_labAabout]L]
24 Long Pam (Cracal) pasam_mux mux|76] param_muxuxd-17-_LAB_RE_X91_¥138_N0_igl
26 Long Pam (Cracal) | bypassed Hyper-Rogister pasam_mux mux|76] param_muxiux0-17-_C4_X90_¥138_NO_IL2
26 Long Pam (Cracal)  bypassed Hyper-Register param_mu mux{ 76] param_muxihux®=17-_LOCAL_INTERCONNECT_X91_Y140_NO_IS0
27 Long Pam (Cracal) param_muemux[76] param_muhuxd-17-_LAB_RE_X91_YL40_NO_IL2
28 Long Pam (Cracal) | bypassed Hyper-Register Fux[76] param_mux|Mux0-33jdatas
29 Long Pam (Cracal) e[ 6] param_mux|Muxl - 33jcombout
30 Long Pam (Cracal) pasam_mux mux| 76] param_muhuxd - 33-ka_labAabouts]
31 Long Pam (Cracal) param_muxmux[76] param_muxiuxd-33-_LAB_RE_X91_Y140_NO_195
32 Long Pam (Cracal)  bypassed Hyper-Regiser param_mux mux|76] param_muiduxd-33-_LOCAL_INTERCONNECT_XS1_Y140_NO_I51
33 Long Pam (Cracal) pasam_mux mux{ 76] param_muxiuxd-33-_LAB_RE_X91_Y140_NO_120
34 Long Path (Cracal) | bypassed Hyper-Register [ T6] param_mux|Muxd - 68jdatac
35 Long Pam (Crecal) [ 76] param_mux|Muxd - 68jcombout
36 Long Pam (Cracal) dout_req[TE][0]|d
37 Retiming Resnction | REG (requined) uz dout_teg[TE|[0]

The following table shows the correlation between critical chain elements and the
Technology Map Viewer examples.

Table 10. Correlation Between Critical Chain Elements and Technology Map Viewer

Line Numbers in Critical Circuit Element in the Technology Map Viewer
Chain Report
1-3 din_reg[33][0] source register and its output
4-14 FPGA routing fabric between din_reg[33][0] and Mux0~85, the first stage of mux in
the crossbar
15-17 Combinational logic implementing Mux0~85
18-20 Routing between Mux0~85 and Mux0~17, the second stage of mux in the crossbar
21-23 Combinational logic implementing Mux0~17
24-27 Routing between Mux0~17 and Mux0~33, the third stage of mux in the crossbar
28-29 Combinational logic implementing Mux0~17
30-33 Routing between Mux 0~33 and Mux0~68, the fourth stage of mux in the crossbar
34-35 Combinational logic implementing Mux0~68
36-37 dout_reg[76][0] destination register

In the critical chain report in Figure 79 on page 71, there are 17 lines that list bypass
Hyper-Register in the Register column. Bypassed Hyper-Register indicates the

location of a Hyper-Register for use if there are more registers in the chain, or if there
are no restrictions on the endpoints. If there are no restrictions on the endpoints, the
Compiler can retime the endpoint registers, or retime other registers from outside the
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critical chain into the critical chain. If the RTL design contains more registers through
the crossbar switch, there are more registers that can be retimed. The Fast Forward
Compile process could also insert more registers to increase the performance.

In the critical chain report, lines 2 to 36 list "Long Path (Critical)" in the Path Info
column. This indicates that the path is too long to run above the listed frequency. The
"Long Path" designation is also related to the Short Path/Long Path type of critical
chain. Refer to Short Path/Long Path section for more details. The (Critical)
designation exists on one register-to-register segment of a critical chain. The (Critical)
designation indicates that the register-to-register path is the most critical timing path
in the clock domain.

The Join column contains a "#1" on line 1, and a "#2" on line 29. The information in
the Join column helps interpret more complex critical chains. For more details, refer
to Complex Critical Chains section.

The Element column shows the name of the circuit element or routing resource at
each step in the critical chain. You can right-click the names to copy them, or cross
probe to other parts of the with the Locate option, as shown in the following figure.

Figure 80. Cross Probe from the Critical Chain Report

Critical Chaln for Base Result
Critical Chain at Lirnit I Recommendations for Critical Chain ]

Path Info I Register I Join Elerment
1 Retiming Restriction REG #1 77
2 |Long Path din_reg(771(0!  Copy Ctri+C
3 |Long Path din_regl77o.  gajact Al Ctri+A
4 | Long Path din_reg[77]{0] 190
S | Long Path emply slot din_reg[77][0] Undo Sort
6 | Long Path empty slot din_reg[77](0
7 Long Path empty slot din_reg(771{0; te @l Locate in Assignment Editor
8 Long Path empty slot din_reg(77](0]~C4_X107_¥113_NO_I5  Locate in Pin Planner
9  Long Path empty slot din_reg(77]{0]~R6_X108_Y116_NO_I1t | 0o in Chip Planner
10 Long Path ermply slot din_reg{7710]~C4_X109_Y112_NO_l4

in R Pri

11 Long Path empty slot din_reg[77](0]~R6_X104_¥112 No |3, -0ct In Resource Froperty Editor
12 Long Path ampty slot din_reg(771(0]~LOCAL_INTERCONNEC  LOCat® in RTL Viewer
13 Long Path din_req[77][0]~LAB_RE_X103_¥112_h Locate in Technology Map Viewer
14 Long Path emply slot mux[122] param_mux|Mux0-38|datz  |opcate in Design File
AE 1 awn o Pkl L e L e L T LT A e T T —

Related Links
e Short Path/Long Path on page 73
e Complex Critical Chains on page 82

e Hyper-Retiming (Facilitate Register Movement) on page 11
Optimizing Insufficient Registers

Use the Hyper-Pipelining techniques that this documents describes to resolve critical
chains limited by reported insufficient registers.

Related Links
e Hyper-Retiming (Facilitate Register Movement) on page 11
e Hyper-Pipelining (Add Pipeline Registers) on page 25
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Critical Chains with Dual Clock Memories

Hyper-Retiming does not retime registers through dual clock memories. Therefore, it
is possible that a functional block in your design that is between two dual clock FIFOs
or memories could be reported as the critical chain, with a limiting reason of
Insufficient Registers, even after Fast Forward compile.

If the limiting reason is Insufficient Registers, and the chain is between dual clock
memories, you can add pipeline stages to the functional block. Alternatively, add a
bank of registers in the RTL, and then allow the Compiler to balance the registers.
Refer to the Pipeline Stages section for a technique to introduce registers in that
critical chain with a software setting.

A functional block between two single-clock FIFOs is not affected by this behavior,
because the FIFO memories are single-clock. The Compiler can retime registers across
a single-clock memory. Additionally, a functional block between a dual-clock FIFO and
registered device I/Os is not affected by this behavior, because the Fast Forward
Compile can pull registers into the functional block through the registers at the device
I/0s.

3.1.5.1.2 Short Path/Long Path

When the critical chain has related paths with conflicting characteristics where one
path could improve performance with more registers, and another path has no place
for additional registers, the limiting reason reported is Short Path/Long Path.

A critical chain is categorized as short path/long path when there are conflicting
optimization goals for Hyper-Retiming. Short paths and long paths are always
connected in some way, with at least one common node. Retimed registers must
maintain functional correctness and ensure identical relative latency through both
critical chains. This requirement can result in conflicting optimization goals. Therefore,
one segment (the long path) can accept the retiming move, but the other segment
(the short path) cannot accept the retiming move. The retiming move is typically
retiming an additional register into the short and long paths.

Critical chains are categorized as short path/long path for the following reasons:
e When Hyper-Register locations are not available on the short path to retime into.

e When retiming a register into both paths to improve the performance of the long
path does not meet hold time requirement on the short path. Sometimes, short
path/long path critical chains exist as a result of the circuit structures used in a
design, such as broadcast control signals, synchronous clears, and clock enables.

Short path/long path critical chains are a new optimization focus associated with post-
fit retiming. In conventional retiming, the structure of the netlist can be changed
during synthesis or placement and routing. However, during Hyper-Retiming, short
path/long path can occur because the netlist structure, and the placement and routing
cannot be changed.

Hyper-Register Locations Not Available

The Fitter may place the elements in a critical chain segment very close together, or
route them in such a way that there are no Hyper-Register locations available.
Sometimes all Hyper-Register locations in a critical chain segment are in use, so there
are no more locations available for further optimization.
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In the following example, the short path includes two Hyper-Register locations, both of
which are in use. One is indicated on line 38, and the other on line 41. Lines 38 and
41 indicate REG in the Register column. The names in the Element column end in
_dff, indicating that the Hyper-Registers in those locations are in use. The _dff
represents the D flop-flop. No other Hyper-Register locations are available for use in
that chain segment. Available Hyper-Register locations would indicate that with a
bypassed Hyper-Register entry in the Register column. Line 45 is not a Hyper-
Register; it is an ALM register.

Critical Chain Short Path Segment with no Available Hyper-Register Locations

] Path Info I Register I Join | Element |
1 Short Path REG (required)  #1 round_robin_mod_requests_r{2]
2 Short Path round_robin_mod_requests_r[2]|q
3 Short Path unusable (hold) | rrm|Mux4~0]datae
4 | Short Path rrm|Mux4~0]|combout
5 | Short Path | round_robin_modulo:rrm|Mux4~0la_mlab/laboutt{13]
6 Short Path round_robin_modulo:rrm|Mux4~0_LAB_RE_X76_Y198_NO_I103
7 Short Path REG | #2 | round_robin_modulo:rrm|Mux4~0_LO... INTERCONNECT_X75_Y198_NO_I3_dff |
B |-eerennens PR P R e, sesssssssssssssasssemsssnnnsnnnennn. -

Example for Hold Optimization

Figure 82.

On line 3 in the following example, the Register column indicates unusable (hold).
There is a Hyper-Register location available at the datae LUT input for the rmm|
Mux4~0 combinational node as indicated on line 3. However, it cannot be used
because using it does not meet hold time requirements as indicated on line 3. The
register on line 1 cannot be retimed forward, and the register on line 7 cannot be
retimed backward.

Critical Chain with Short Path/Long Path

Critical Chain at Fast Forward Limit

Critical Chain Detals

Optimizations Analyzed (Cumulative) | Recommendations for Critcal Cham
Path inlo Regisaer Joan Eloment
1  Shont Path REG Wl round_robin_mod_tast_fL]-C4_X73_Y130_NO_|6_dn
2  Shot Paih round_roban_mod_last fL]-C4_X73_Y130_NO_|6
3 Shoil Path unsabie hold) round_roban_mod_last fL]-LOCAL_INTERCONMNECT _X74_¥L33_NO_ISL
4  Shon Path round_robin_mod_last fi]-LAB_RE_XT4 Y133 NO_|9
5  Short Path reund_rebdn_modulomminexil]-3-_datae_did
6 Shod Path REG round_roben_moduloomminex1]-3-_datas_on
7 Shon Paih remnex 1] - 3jdatae
8  Short Path mmjnext L]-3jcombau
¥ Shon Path round_roben_mod_nexfl]-reglja
10 Shot Paify REG (required) #2 round_robén_mod_nexi1]-regd
| e [ YR v, | v G s s we s i AR T P O Pt o
12 Long Pam (Crscal)  REG #1 round_rebin_mod_last_fL]-C4_X73_Y130_NO_I&_dn

13 Long Pam (Crcal)
14 Long PR (Cracad)
15 Long Path (Craical)
18 Long Path (Crscal)
17 Long Pam (Cecal)

Lypassed Hyper-Register

by passed Hyper-Regisier

Optimizing Short Path/Long Path

Evaluate the Fast Forward recommendations to optimize performance limitations due
to short path/long path constraints.

Add Registers

round_roben_med_last_fL]-C4_X73_Y130_NO_|6
round_roben_mod_last fL]-LOCAL_INTERCONMNECT _X74_¥L32_NO_MO
round_roban_mod last fL]-LAB RE_X74 Y132 NO_I0

mmjhdod Sjauio_generatedidnaderdvidedop_3-5|datal
mmjkéodjane_generaedidivideridniderop_3-9|cou

Manually adding registers on both the short and long paths can be helpful if you can
accommodate the extra latency in the critical chain.
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Figure 83. Critical Chain with Alternating Short Path/Long Path
(annot Retime
Backwards Due
to Short Path

S O

Cannot Retime
Forwards Due O > Q

to Short Path B4

—————— Long Path (LP)
——— Short Path (SP)

If you add registers to the four chain segments, the Compiler can optimize the critical
chain. When additional registers are available in the RTL, the Compiler can optimize

their positions.

Figure 84. Sample Short Path/Long Path with Additional Latency

oo

Legend

() Manually Added e

"""" Long Path (LP)
—— Short Path (SP)

Duplicate Common Nodes

When the short path/long path critical chain contains common segments originating
from same register, you can duplicate the register so one duplicate feeds the short
path and one duplicate feeds the long path.
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Figure 85.

Figure 86.

Critical Chain with Alternating Short Path/Long Path

Cannot Retime
Backwards Due
to Short Path

O O

(annot Retime
Forwards Due Q > Q
to Short Path v
legend T
""" Long Path (LP)

—— Short Path (SP)

Short Path/Long Path with Two Duplicate Nodes

0@
.

Legend

Q Duplicated Nodes e

"""""" Long Path (LP)
—— Short Path (SP)

The Fitter can optimize the newly-independent segments separately. The duplicated
registers have common sources themselves, so they are not completely independent,
but the optimization is easier with an extra, independent register in each part of the
critical chain.

You can apply a maximum fan-out synthesis directive to the common source registers.
Use a value of one, because a value greater than one could result in the short and
long path segments having the same source node, which you tried to avoid.

Alternately, use a synthesis directive to preserve the duplicate registers if you
manually duplicate the common source register in a short path/long path critical
chain. Otherwise, the duplicates may get merged during synthesis. Using a synthesis
directive to preserve the duplicate registers can cause an unintended retiming
restriction, so it might be better to use a maximum fan-out directive.
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Data and Control Plane

Sometimes, the long path can be in the data plane, and the short path can be in the
control plane. If you add registers to the data path, change the control logic. This can
be a time-consuming process. In cases where the control logic is based on the number
of clock cycles in the data path, you can add registers in the data path (the long path)
and modify a counter value in the control logic (the short path) to accommodate the
increased number of cycles used to process the data.

3.1.5.1.3 Fast Forward Limit

Figure 87.

The critical chain has the limiting reason of Path Limit, when there are no more Hyper-
Register locations available on the critical path, and the design cannot run any faster
or be retimed into. Path Limit also indicates that you have reached a performance limit
of the current place and route result.

As shown in the following figure, the critical chain goes from a hard memory block to
the first Hyper-Register available outside the hard memory block. The fact that the
source is a hard memory block can be inferred from parts of the names on lines 1, 2,
and 3. Lines 1 and 2 refer to ram_blockl1a0, and line 3 contains a reference to
MEDIUM_EAB_RE, which refers to a medium embedded array block routing element.
The medium embedded array block is one of the hard memory blocks in Stratix 10
devices.

Critical Chain at Fast Forward Limit

Critical Chain at Fast Forward Limit

Optimizations Analyzed (Cumulative) | Recommendations for Critical Chain | Critical Chain Detalls

] Path Info Register I Join | Element
1 Long Path REG (required) #1 Round:ROUND[0].U_ROUND|SubBytes:...auto_generated|ram_blockla0~reg0
2 Long Path | | ROUND[0].U_ROUND|U_SUB|ROM[2] ROM...ated|ram_blockla0|portadataout[0]
3 Long Path Round:ROUND[0].U_ROUND|SubBytes...0~MEDIUM_EAB_RE_X70_¥121_N0_|92
4 Long Path :REG |42 |Round:ROUND[0].U_ROUND|SubBytes:..._blockla0~R6_X64_Y121_NO_I59_dff

When the critical chain is a Path Limit, it shows Long Path in the Path Info column.
This indicates that the chain is too long, and it could go faster if Hyper-Retiming could
retime a register into the chain. No entries marked as bypassed Hyper-Register in the
Register column indicate that there are no Hyper-Register locations available.

The limiting reason of Path Limit does not imply that the critical chain has reached the
inherent silicon performance limit. It simply means that the current place and route
result has the reported performance limit. Another compilation could result in a
different placement that allows Hyper-Retiming to achieve better performance on the
particular critical chain. One common reason for a path limit is when registers have
not been packed into dedicated input or output registers in a hard DSP or RAM block.

Optimizing Path Limit

Evaluate the Fast Forward recommendations. If your critical chain has a limiting
reason of Path Limit and it is entirely in the core logic and in the routing elements of
the Intel FPGA fabric, the design can run at the maximum performance of the core
fabric. When the critical chain has a limiting reason of Path limit, and it is through a
DSP block or hard memory block, you can improve performance by optimizing the
path limit.

Intel® Stratix® 10 High-Performance Design Handbook
77



™ ®
l n tel ) 3 Compiling Stratix 10 Designs

To optimize path limit, enable the optional input and output registers for DSP blocks
and hard memory blocks. When you do not use the optional input and output registers
for DSP blocks and memory blocks, the locations for the optional registers are not
available for Hyper-Retiming, and are not shown as bypassed Hyper-Registers in the
critical chain. The path limit is the silicon limit of the path without the optional input or
output registers. The performance can be improved by enabling optional input and
output registers.

Turn on optional registers using the IP parameter editor to parameterize hard DSP or
memory blocks. If DSP or memory functions are inferred from your RTL, ensure you
follow the recommended coding styles described in Recommended HDL Coding Styles
so that the optional input and output registers of the hard blocks are used. The
Compiler does not retime into or out of DSP and hard memory block registers. Hence,
it is important to instantiate the optional registers in order to achieve maximum
performance.

If your critical chain includes true dual port memory, refer to True Dual-Port Memory
for optimizing techniques.

Related Links

e Recommended HDL Coding Styles

e True Dual-Port Memory on page 47

3.1.5.1.4 Loops

Figure 88.

A loop is a feedback path in a circuit. When a circuit is heavily pipelined, loops are
often a limiting reason to increasing design fyax through register retiming. A loop may
be very short, containing only a single register or much longer, containing dozens of
registers and combinational logic clouds. A register in a divide-by-two configuration is
a short loop.

Simple Loop

Toggle
FlipFlop

When the critical chain is a feedback loop, the number of registers in a loop cannot be
changed by register retiming without changing functionality. Retiming can be
performed around a loop without changing functionality, but additional registers
cannot be put in the loop. To explore performance gains, the Fast Forward Compile
process adds registers at particular boundaries of the circuit, such as clock domain
boundaries.
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Figure 89. FIFO Flow Control Loop

In a FIFO flow control loop, upstream processing stops when the FIFO is full and
downstream process stops when the FIFO is empty.

FIFO Full

Data
Producer

! FIFO —p

Figure 90. Counter and Accumulator Loop

In a counter and accumulator loop, a register's new value depends on its old value.
This includes variants like LFSRs (linear feedback shift register) and gray code
counters.

+1

Counter Accumulator

]

!

Figure 91. State Machine Loop
In a state machine loop, the next state depends on the current state of the circuit.

oo
<
&
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Figure 92. Reset Circuit Loop
Reset circuit loops include monitoring logic to reset if they get into an error condition.

Y

Combinational
Logic

>

Use loops to save area through hardware re-use. Components that are re-used over
several cycles typically involve loops. For example reused components include CRC
calculations, filters, floating point dividers, and word aligners. Loops are also used in
closed loop feedback designs such as IIR filters and automatic gain control for
transmitter power in remote radiohead designs.

Example of Critical Chain with Loops as the Limiting Reason

The following screenshots show the relevant panels from the Fast Forward Details
report and the logic contained in the critical chain.

Figure 93. Fast Forward Details Report showing Limiting Reason for Hyper-Optimization
is a Loop

Fast Forward Detalls for Clock Domain clk_125

Fast Forward Summary lor Clock Domain cik_125 |

Siep Fasu Forward Opémizasons Analyred To Achieve Fmax Slack Relasonship
1 Bazp Podormanco .H-:ml- 284 MHT 4 480 8000
2 Fast Forward Step &1 (Hyper-Reuming) Removed asynchronous clears on 197 Registers 426 MHz 5651 8000
Removed user preserve asugnments kom 51 Registers
3  Fast Forward Step 42 (Hyper-Pipelining)  Removed asynchronous clears on 93 Regraters 454 MH2 5.T95 8000
Added up 0 L ppeline stage in 131 Pamhs
4 Fast Forward Lima Perdomance Limited by RTL Loop

In the following figure, the Join ID for the start and end points is the same, which is
#1. This case indicates that the start and end points of the chain are the same, thus
making it a loop.
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Figure 94.

Figure 95.

Example 15.

Critical Chain with Loop as Reported During Hyper-Retiming

Limiting Critical Chain Bafore Hyper-O ptimization

_ Opsnizasons Analyzed (Cumulative) | Crivcal Chain i Limit | Recommendations for Critcal Chiain |

Path Infio

T

Jain

Leng Paih (Criteal)
Long Path (Critical)
Long Pah (Critical)
Long Path (Crtical)
Leng Path (Critieal)
Long Path (Ciitical)
Long Path (Critical}
Long Path (Critical)
Leng Path (Critical}
10 Long Path (Cribeal)
11 Long Path (Critical)
12 Long Path (Critical)
13 Long Path (Critical)
14 Long Path (Critical)
15 Long Path (Critical)
16| Long Path (Critical)
17| Long Path (Critical)
18 Long Path (Critical)
18/ Long Path (Critical)
20 Leng Path (Critical)
1| Long Path (Critical)
22 Long Pamh (Citical)
23 Long Pah (Critical)
24 Leng Path (Critical)
26 Long Path [Criical)
| 26 Long Panh (Crincal)
27| Long Pah (Critical)
28 Leong Path (Criteal)
20 Long Path (Critical)
30| Long Path (Critical}
31 Long Path (Critical)

LR - R R

REG

bypassad Hyper-Regiser
bypasied Hyped-Regise
bypassed Hyper-Regiser

bypassed Hypes-Regisier

bypassed Hyper-Regisier
bypassed Hypei-Re gister
brypassed Hyper-Regiser
Irppassed Hyped-Regisor

by passed Hypos-Regishor

bypassed Hyper-Regiser

bypassed Hypes-Regiser

bypassed Hyper-Regiser
bypassed Hyped-Re gister
trypassed Hype-Regisor

&1

U_MAC_t|U_MAC_tc_FF|Dout_ieqg[35]lq

MAC_bell_MAC IMAC b FFU_MAC tx_FF|Doul_reg[3%]-Ia_lablabout{10]
MAC_beU_MAC_DIMAC_te_FFU_MAC_..._reg{35]-LAB_RE_X136_YOB_NO_IL20
MAC_bel_MAC_tMAC _te_FFU_MAC_i.. FlDout_regl35]-R3_XL24_YDE_NO_I20
MAC_bU_MAC_BIMAC_te FFU_MAC_ 1. F|Dout_regas]-C4_X135_Y99_NO_I25
MAC_bell_MAC_bgMAC_b_FFU_MAC. L INTERCONNECT_XL36_Y101_N0_i3L
MAC_beU_MAC_DIMAC_te_FFU_MAC_..._reg{35]-LAB_RE_X136_YL0L_N0_I23
U_MAC_te|U_MAC_be_ctl|Seleciosd-Ddatal
U_MAC_t|U_MAC_ti_eul|Sefeciont - Ofesmboul

MAC_ bl MAC_tgMAC_b_citll_MAC_te_ciifSeleciord~0-ia_labfaboun{11]

MAC_bell_MAC_SIMAC_be_ciitll_MAC, . clord-0-_LAB_RE_X136_¥L0L_NO_IL0L

MAC_bel_MAC_bMAC_bx_citl_MAC..[Selectord-0-_C4_X135_YL0Z_NO_IZ6
MAC_teU_MAC_IMAC_bx_citl_MAC_.. MSelecionl-0-_R3_X136_¥102_ND_I7
N _citl_MA..AL_INTERCONNECT X136 _Y102_NO_i37

MAC_tell_MAC_DMAC_be_ciitl)_MAC..ecior-0-_LAB_RE_X136_YL02_NO_ILO

|U_MAC_txjU_MAC_x_chllSelociond~1[dataa

U_MAC_t|U_MAC_te_cul|Setecion - 1jcombout

MAC_ ol MAC_ tMAC_te_ctitl_MAC_tx_ciijSelectond~1-1a_iat¥labout]7]
MAC_tell_MAC_MAC_tx_etrtl_MAC,.eciond-1-_LAB RE_ X138 _¥L102_NO_IS7
MAC_ bl MAC_BIMAC_br_citll MAC . fiSelociosd-1-_C4_X13%_¥98_NO_I3%
MAG_DCU_MAC_DIMAC_be_ciitll_MA, . AL_INTERCONNECT_X136_Y101_N0_i39
MAC_beU_MAC_DIMAC_te_ciitl)_MAC . eciord-1-_LAB_RE_X136_YL0L_NO_W8
U_MAC_t|U_MAC_tx_FFjMuxE- 2|daad

U_MAC_tx|U_MAC_bc_FF[MuxS - 2|combout

MAC_DeU_MAC DMAC_ D FFU_MAC_t_FFIMuxS~2-la_labfabouth(4]
MAC_beU_MAC_DIMAC_te_FFU_MAC . ux5-2~_LAB_RE_X136_YLOL_NO_IL14
MAC_bell_MAC_t|MAC_tx_FFU_MAC_ix_FF|MusS-2-_R3_X134_Y101_NO_ILS
MAC_bU_MAC_BIMAC_te FFU_MAC_. L_INTERCONNECT_X136_Y101_NO_u7
MAC_Dill_MAC MAC_tx FFU_MAC, MuxS-2- LAB_RE_X136_YLO0L_NO_I3%
U_MAC_te|U_MAC_tx_FF|Doul_res_enjiatab

Critical Chain in Technology Map Viewer

The output of the RetryCnt[0] register feeds back to its enable input through two
levels of combinational logic. The other inputs to the logic cone for the RetryCnt[0]
register are not shown for clarity, but the following source code shows parts of the
MAC_tx_ctrl source and some of the inputs to the RetryCnt registers.

MAC o MAE et

WAC b FF A MAC 1 FF

(e (1)
Seleciond Dout 8
Selecioed-] jonsan D )
Tl T ot I
o
10GIC_CRLL_COuB -
i LOGIC CELL COMB s
LOGIC,CELL COM
LOGIC_CELL Cob

Source Code for Critical Chain

StateJam:
iT (RetryCnt<=MaxRetryé&&JamCounter==16)
Next_state=StateBackOff;
else if (RetryCnt>MaxRetry)
Next_state=StateJamDrop;
else
Next_state=Current_state;

always @ (posedge Clk or posedge Reset)

if (Reset)
JamCounter <=0;

else if (Current_state!=StateJam)
JamCounter <=0;

else if (Current_state==StateJam)
JamCounter <=JamCounter +1;

always @ (posedge Clk or posedge Reset)
iT (Reset)
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RetryCnt <=0;

else if (Current_state==StateSwitchNext)
RetryCnt <=0;

else if (Current_state==StateJam&&Next state==StateBackOff)
RetryCnt <=RetryCnt +1;

3.1.5.2 Details about Critical Chain Reports

The topics below apply to any type of critical chain.

3.1.5.2.1 One Critical Chain per Clock Domain

Hyper-Retiming reports one critical chain per clock domain, except in a special case
covered in Critical Chains in Related Clock Groups. If you perform a Fast Forward
compile, Hyper-Retiming reports show one critical chain per clock domain per Fast
Forward optimization step. Hyper-Retiming does not report multiple critical chains per
clock domain, because only one chain is the critical chain.

Review at other chains in your design for potential optimization. View other chains in
each step of the Fast Forward compilation report. Each step in the report tests a set of
changes such as removing or converting asynchronous clears and adding pipeline
stages and reports the performance based on those changes.

Related Links
Critical Chains in Related Clock Groups on page 82

3.1.5.2.2 Critical Chains in Related Clock Groups

When two or more clock domains have the exact same timing requirement, and there
are paths between the domains, and the registers on the clock domain boundaries do
not have a Don't Touch attribute, the Hyper-Retiming reports a critical chain for a
Related Clock Group. The optimization techniques critical chain types also apply to
critical chains in related clock groups.

3.1.5.2.3 Complex Critical Chains

Complex critical chains consist of several segments connected with multiple join
points. A join point is indicated with a positive integer in the Join column in the Fitter
reports. Join points are listed at the ends of segments in a critical chain, and they
indicate where segments diverge or converge. Join points indicate connectivity
between chain segments when the chain is listed in a line-oriented text-based report.
Join points correspond to elements in your circuit, and show how they are connected
to other elements to form a critical chain.

The following example shows how join points correspond to circuit connectivity, using
the sample critical chain in the following table.

Table 11. Sample Critical Chain

Path Info

Register

Join

Element

REG

#1

REG

#2

continued...
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Path Info

Register

Join

Figure 96. Visual Representation of Sample Critical Chain

Each circle in the diagram contains the element name and the join point number from
the critical chain table.
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Figure 97. Complex Critical Chain

A critical chain can include dozens of join points. The complex critical chain shown
below has 35 join points.

601 Long Path | empty slot #4 |\iteration_g:1:iteration_i|sova_il|trellis2_i0|reg[4z
602 J ---emeemeen s | = | et e e S e
603 REG #5 iteration:\iteration_g:1:iteration_i...CAL_INTERCOI
604 | | |iteration:\iteration_g:1:iteration_i...8_LOCAL_INTE
605 | | |iteration-\iteration_g:1:iteration_i|...|freePathld~7
606 | empty slot | #4 |\iteration_g:1:iteration_i|sova_il|trellis2_i0|reg[4:z
BT - --ooonone e T TIRRrTE firoes T s

i abico o -] itorotion i C AL Il 1
= El = I - J
1504 Long Path empty slot #10 :\iteration_gzl:iteration_i|sova_i1|tre||is2_i0|freePa
1505 | -----cmemmmmamaaaas mmmmmsmmmmameas . St mmemamamssssmasamsssssassmsmsssssssemsmssssse=s_ |, sms=s=a==ss
1506 empty slot #11  |iteration:\iteration_g:1:iteration_...0_LOCAL INTEI
1507 ' 'iteration:\iteration_“g:l:iteraticn_i|...is2_10|Mux2DE
1508 'empty slot |#10 .\iteration_gzl:iteration“i|sovami1|tre||i52mi0|freePa
1500  -coemececeemeeena- [F—— [ [
1510 |empty slot |#11 |iteration:\iteration_g:1:iteration_...0_LOCAL INTEI
e ik = Aiteration -1 -iteration il g2 (0l I0=—
5084 Short Path \iteration_g:I:iferafion_ijsova_i1|oels2_i0|revWe
5085 Short Path REG (required) |#33 iteration:\iteration_g:1:iteration_ijsova:...1]|trellis2
111: (- 1 RN e
5087 Short Path REG #34  iteration:\iteration_g:1:iteration_i|sova...2:trellis2_
5088 Short Path | \iteration_g:1:iteration_i|sova_il|trellis2_iD|reviNe
5089 Short Path REG (required) :#33 iteration:\iteration_g:1:iteration_ijsova:...1|trellis2
S . e T A i s B
5091 Short Path \REG |#34  iteration:\iteration_g:1:iteration_i|sova...2:trellis2,
5092 Domain Boundary Exit #35

For long critical chains, identify smaller parts of the critical chain for optimization.
Recompile the design and analyze the changes in the critical chain. Refer to Optimizing
Loops for other approaches to focus your optimization effort on part of a critical chain.

3.1.5.2.4 Extend to locatable node

You may see a path info entry of “Extend to locatable node” in a critical chain. This is
a convenience feature to allow you to correlate nodes in the critical chain to design
names in your RTL.

Not every line in a critical chain report corresponds to a design entry name in an RTL
file. For example, individual routing wires have no correlation with names in your RTL.
Typically that is not a problem, because another name on a nearby or adjacent line
corresponds with, and is locatable to, a name in an RTL file. Sometimes a line in a
critical chain report may not have an adjacent or nearby line that you can locate in an
RTL file; this occurs most frequently with join points. When that happens, the critical
chain segment is extends if necessary until it reaches a line that can be located to an
RTL file.
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3.1.5.2.5 Domain Boundary Entry and Domain Boundary Exit

Figure 98.

The Path Info column lists the Domain Boundary Entry or Domain Boundary Exit for a
critical chain. Domain boundary entry and domain boundary exit refer to paths that
are unconstrained, paths between asynchronous clock domains, or between a clock
domain and top-level device input-outputs. Domain boundary entry and exit can also
be indicated for some false paths as well.

A domain boundary entry refers to a point in the design topology, at a clock domain
boundary, where Hyper-Retiming can insert register stages (where latency can enter
the clock domain) if Hyper-Pipelining is enabled. The concept of a domain boundary
entry is independent of the dataflow direction. Hyper-Retiming can insert register
stages at the input of a module, and perform forward retiming pushes, and it can
insert register stages at the output of a module, and perform backward retiming
pushes. These insertions occur at domain boundary entry points.

A domain boundary exit refers to a point in the design topology, at a clock domain
boundary, where Hyper-Retiming can remove register stages and the latency can exit
the clock domain, if Hyper-Pipelining is enabled. Removing a register may be counter
intuitive. However, it may be necessary to retain functional correctness, depending on
other optimizations performed by Hyper-Retiming.

Sometimes a critical chain indicates a domain boundary entry or exit when there is an
unregistered I/0O feeding combinational logic on a register-to-register path as shown in
the following figure.

Domain Boundary with Unregistered Input/Output

Combinational
Logic

The register-to-register path might be shown as a critical chain segment with a
domain boundary entry or a domain boundary exit, depending on how it restricted
Hyper-Retiming. The unregistered input prevents the Hyper-Retiming from inserting
register stages at the domain boundary, because the input is unregistered. Likewise,
the unregistered input can also prevent Hyper-Retiming from removing register stages
at the domain boundary.

Critical chains with a domain boundary exit do not provide complete information for
you to determine what prevents retiming a register out of the clock domain. To
determine why a register cannot retime, review the design to identify the signals that
connect to the other side of a register associated with a domain boundary exit.

Domain boundary entry and domain boundary exit can appear independently in critical
chains. They can also appear in combination such as, a domain boundary exit without
a domain boundary entry, or a domain boundary entry at the beginning and end of a
critical chain.

The following critical chain begins and ends with domain boundary entry. The domain
boundary entries are the input and output registers connecting to top-level device
I/0s. The input register is round_robin_mod_last_r and the output register is
round_robin_mod_next.
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Figure 99.

Figure 100.

Figure 101.

3 Compiling Stratix 10 Designs

Critical Chain Schematic with Domain Boundary
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The limiting reason for the base compile is Insufficient Registers.

Fast Forward Compile Report with Insufficient Registers

Fast Forward Details for Clock Domain clock

| FastForward Summary for Clock Domain clock [ Fast Forward Limit Critical Chain Schematic .I

| Step Fast Forward Optimizations Analyzed Estimated Fmax Slack Relationship
1 Base Performance None |82 MHz -2.262 |10.000

Il Fast Forward Limit Performance Limited by: Insufficient Registers - - --

The following parts of the critical chain report show that the endpoints are labeled with
Domain Boundary Entry.

Critical Chain with Domain Boundary Entry

| Crtical Chain Summary for Clock Domaln clk

14 Long Pain (Critical)
15 Long Pam (Cridcal)
L6 Long Pah (Critical)
17 Long Path (Crtical)
18 Long Paih (Critical)
| 18 Long Path (Criical)
| 20/ Long Path (Crtical)
2L Long Pah (Criical)
22/ Long Paih (Criical)
23| Long Paih (Critical)
24 Long Pamh (Critical)

rypassed Hyper-Regises
ypassed HyperRegiser

bypassed Hyper-Regiser
bypassed HypenRegiser

by passed Hyp e Regise

| Path Info Register Jain Element
|1 Domain Boundary Enry | REG (required) L round_robin_tequests_i[4]
| 2 | Long Pah (Criical) round_robin_equests_(4jig
|3 Long Pam (Critcal) mound_robin_equests_if4]-Lag_RE_XZ3%_v48_NO_ILOS
|4 |Long Pam (Critcal) bypassed Hyper-Regiser round_rabin_requests_i4]-C4_X224_Y48_N0_I10
5 | Long Paih (Critical) bypassed Hyper-Regiser round_robin_requests_i[4]-C4_X224_Y52_NO_ILD
6 | Long Painh (Critical) | bypassed Hype-Regises found_robin_fequeds i[4]-C4_X224_Y5E6_NO_ILO
T Long Pam (Crtical) | tyypassod Hyper-Regiser mound_robin_requests 1(4]-C4_X224_ YEL_t0_iL0
8 Long Pamh (Critical) bypassad Hyper-Register round_robin_tequests._il4]-LOCAL_INTERCONNECT_X225_YG3_N0_IL4
9 | Long Paih (Critical) bypassed Hyper-Regiser round_rabin_requests_i[4]-LAB_RE_X225_¥63_N0_I5L
L0 Long Pam (Critical) e _0-T|dalaa
11 Long Pam (Crincal) nfpux_0~Tjcombou
12/ Long Pamh (Critical) | nMue_0-7-_LAB_RE_X225_Y63_NO_IL19
L3 Long Path (Critcal) bypassed Hyper-Regiser nMux_0~7~_C4_X225_YBI_ND_IL7

fiMux_0-7-_LOCAL_INTERCONNECT X225 Y65 _NO_IS0
mpux_0-T-_LAB_RE_X225_Y85_N0_IT6

3T |datab

i Tjcombout

MEIT-LAE_RE_X225_YE5_NO_JL30
nm3T-LOCAL_INTERCONNECT X225 Y85 NO_|28
MHAT-LAB_RE_X235_Y65_NO_MG

nphs-L[datad

MHES - Ljcomaout

M65-1-_LAB RE X225 Y65 N0 [L19
MpeS-1-_LOCAL_INTERCONNECT_X225_YBS5_NO_l49

25| Long Path (Crical) bypassad HyperRegisoer npiS-1- LAB RE X226 YE5_NO_I9
| 26 Long Patn (Crincal) nHT6~2{datad

27| Long Pamh (Critical) 76~ 2|comaul

28 Long Pam (Criical) round_robin_nex1]-regljd

29 Domam Boundary Engy | REG (required) a2 round_robin_next{L]-reg

Both the input and output registers are indicated as Domain Boundary Entry because
the Fast Forward Compile could insert register stages at these boundaries if Hyper-
Pipelining were enabled. Because the critical chain for the base compile does not
contain any Fast Forward optimizations, no additional register stages were inserted at
either the input to the chain, or the output of the chain.

A similar path in the same circuit has an endpoint indicated as Domain Boundary Exit
in a critical chain reported after two steps of Fast Forward optimization. The following
screenshot shows that the limiting reason for Fast Forward Step #2 is Short path/Long
path.
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Figure 102.

Fast Forward Compile Report with Short Path/Long Path

Fast Forsard Detalls for Clock Domain clk_mod

Fast Forward Summary for Clock Domain cic_mod |

Slep Fas Forward Optimizations Anaby zed To Achieve Fmax Shack Rulationship
L Base Perfornance HNang 258 MH: L121 5000
2 Fast Forward Step Wl (Hyper-Pipeining)  Added up i¢ 1 papeline slage in 10 Paihs 468 MHz 2 B65 5.000
3 Fast Forwam Slep 42 (Hyper-Pipelining)  Added up 1o 1 pipeine sage in 10 Pans TOB bz 3587 5000
4 Fast Forwawed Step #3 (Myper-Pipelining)  Added up to L papeline stage in 10 Paths BEL MH2 3839 5000
% |Fasl Forwaed Siep &4 (Hyper-Pipelining)  Added up fo 1 pipeling ®age in & Palhs 962 MHz 2960 5000
6 | Fast Forwasd Lims Peromance Limited by Shon PatvLong Pam = =

3.1.5.2.6 Critical Chains with Dual Clock Memories

Hyper-Retiming does not retime registers through dual clock memories. Therefore, it
is possible that a functional block in your design that is between two dual clock FIFOs
or memories could be reported as the critical chain, with a limiting reason of
Insufficient Registers, even after Fast Forward compile.

If the limiting reason is Insufficient Registers, and the chain is between dual clock
memories, you can add pipeline stages to the functional block. Alternatively, add a
bank of registers in the RTL, and then allow the Compiler to balance the registers.
Refer to the Pipeline Stages section for a technique to introduce registers in that
critical chain with a software setting.

A functional block between two single-clock FIFOs is not affected by this behavior,
because the FIFO memories are single-clock. The Compiler can retime registers across
a single-clock memory. Additionally, a functional block between a dual-clock FIFO and
registered device I/Os is not affected by this behavior, because the Fast Forward
Compile can pull registers into the functional block through the registers at the device
I/Os.

Related Links
Appendix A: Parameterizable Pipeline Modules on page 115

3.1.5.2.7 Critical Chain Bits and Buses

The critical chain of a desigh commonly includes registers that are single bits in a
wider bus or register bank. When you analyze such a critical chain, focus on the bus
as a whole, instead of analyzing the structure related to the single bit. For example, a
critical chain that refers to bit 10 in a 512 bit bus probably corresponds to similar
structures for all the bits in the bus. A technique that can help with this approach is to
mentally replace each bit index, such as [10], with [*].

If the critical chain includes a register in a bus where different slices go through
different logic, then focus your analysis on the appropriate slice based on which
register is reported in the critical chain.

3.1.5.2.8 Delay Lines

You may have a parameterized module that delays a bus by some number of clock
cycles. Sometimes that kind of structure is converted during synthesis to an
ALTSHIFT_TAPS Megafunction. The following screenshot shows part of a critical chain
with a delay module that has been converted to an ALTSHIFT_TAPS Megafunction.
The highlighted section at the right-hand end shows a design hierarchy of
altshift_taps:r_rtl_0, indicating that synthesis replaces the bank of registers
with the ALTSHIFT_TAPS IP core. Parts of the ALTSHIFT_TAPS IP core cause the
critical chain segment categorization as a short path.
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Figure 103. Critical Chain Report with Delay Line

1 byp ¢ BER g e

The Fitters places the chain of registers so close together that the hold time cannot be
met if the Fitter uses any of the intermediate Hyper-Register locations. Turning off
Auto Shift Register Replacement for the bank of registers would prevent synthesis
from using the ALTSHIFT_TAPS Megafunction and probably resolve the short path
part of that critical chain.

Consider whether a RAM-based FIFO implementation is an acceptable substitute for a
register delay line. If one function of the delay line is pipelining routing to move
signals a long distance across the chip, then a RAM-based implementation is typically
not an acceptable substitute. A RAM-based implementation can be a compact way to
delay a bus of data if you do not need to move it a long distance across the chip.

3.1.5.3 Retiming Restrictions and Workarounds

This section describes RTL design techniques you can use to avoid retiming
restrictions. There are a variety of situations that cause retiming restrictions. Retiming
restrictions exist because of hardware characteristics, software behavior, or are
inherent to the design.

Table 12. Hyper-Register Support for Various Design Conditions

Design Condition Hyper-Register Support

Initial conditions that cannot be preserved Hyper-Registers do have initial condition support. However, you cannot
perform some retiming operations while preserving the initial condition stage
of all registers (that is, the merging and duplicating of Hyper-Registers). If
this situation occurs in the design, the registers involved are not retimed.
This ensures that the register retiming does not affect design functionality.

Register has an asynchronous clear Hyper-Registers support only data and clock inputs. Hyper-Registers do not
have control signals such as asynchronous clears, presets, or enables. Any
register that has an asynchronous clear cannot be retimed into a Hyper-
Register. Use asynchronous clears only when necessary, such as state
machines or control logic. Often, you can avoid or remove asynchronous
clears from large parts of a datapath.

Register drives an asynchronous signal This design condition is inherent to any design that uses asynchronous
resets. Focus on reducing the number of registers that are reset with an
asynchronous clear.

Register has don’t touch or preserve The Compiler does not retime registers with these attributes. If you use the
attributes preserve attribute to manage register duplication for high fan-out signals, try
removing the preserve attribute. The Compiler may be able to retime the
high fan-out register along each of the routing paths to its destinations.
Alternatively, use the dont_merge attribute. The Compiler retimes registers
in ALMs, DDIOs, single port RAMs, and DSP blocks.

Register is a clock source This design condition is uncommon, especially for performance-critical parts
of a design. If this retiming restriction prevents you from achieving the
required performance, consider whether a PLL can generate the clock, rather
than a register.

continued...
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Design Condition

Hyper-Register Support

Register is a partition boundary

This condition is inherent to any design that uses design partitions. If this
retiming restriction prevents you from achieving the required performance,
add additional registers inside the partition boundary for Hyper-Retiming.

Register is a block type modified by an
ECO operation

This restriction is uncommon. Avoid the restriction by making the functional
change in the design source and recompiling, rather than performing an
ECO.

Register location is an unknown block

This restriction is uncommon. You can often work around this condition by
adding extra registers adjacent to the specified block type.

Register is described in the RTL as a latch

Hyper-Registers cannot implement latches. Sometimes, latches are inferred
because of RTL coding issues, such as with incomplete assignments. If you
do not intend to implement a latch, change the RTL.

Register location is at an I/O boundary

All designs contain I/0, but you can add additional pipeline stages next to
the I/0 boundary for Hyper-Retiming.

Combinational node is fed by a special
source

This condition is uncommon, especially for performance-critical parts of a
design.

Register is driven by a locally routed clock

Hyper-Registers are clocked by only the dedicated clock network. Using the
routing fabric to distribute clock signals is uncommon, especially for
performance-critical parts of a design. Consider implementing a small clock
region instead.

Register is a timing exception end-point

The Compiler does not retime registers that are sources or destinations of
SDC constraints.

Register with inverted input or output

This condition is uncommon.

Register is part of a synchronizer chain

The Fitter optimizes synchronizer chains to increase the mean time between
failure (MTBF), and the Compiler does not retime registers that are detected
or marked as part of a synchronizer chain. Add more pipeline stages at the
clock domain boundary adjacent to the synchronizer chain to provide
flexibility for the Hyper Retimer.

Register with multiple period requirements
for paths that start or end at the register
(cross-clock boundary)

This situation occurs at any cross-clock boundary, where a register latches
data on a clock at one frequency, and fans out to registers running at
another frequency. The Compiler does not retime registers at cross-clock
boundaries. Consider adding additional pipeline stages at one side of the
clock domain boundary, or the other, to provide flexibility for retiming.

Related Links

Timing Constraint Considerations on page 18

3.1.5.4 Finalize Stage Reports

The Finalize stage reports describe final placement and routing operations, including:

e Delay chain summary information

e Post-route hold fix-up data. The Compiler may report hold violations for short
paths following the Retime stage. The Fitter identifies and corrects the short paths
with hold violations during the Fitter (Finalize) stage by adding routing wire

along the paths.
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Figure 104. Finalize Stage Reports
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4 HyperFlex Porting Guidelines

This chapter provides guidelines for migrating a Stratix V or Arria 10 designs to the
HyperFlex FPGA architecture. These guidelines allow you to quickly evaluate the
benefits of design optimization in the Stratix 10 HyperFlex architecture, while still
preserving your design’s functional intent.

Porting requires minor modifications to the design, but can achieve major performance
gains for your design’s most critical modules.

To experiment with performance exploration, select for migration a large, second-level
module that does not contain periphery IP (transceiver, memory, etc.). During
performance exploration, review reported performance improvements.

4.1 Design Migration and Performance Exploration

Migrate your Stratix V or Arria 10 design to a Stratix 10 device and evaluate
performance improvement. Migrating a design for Stratix 10 devices requires only
minor changes. However, additional non-required changes can help achieve dramatic
performance improvements. This increased speed can help you close timing, or
provide flexibility to add additional functionality to your design.

Required design changes as similar to any device upgrade. These changes include
updating PLLs, high-speed I/0 pins, and other device resources. The Stratix 10
version of these components have the same general functionality. However, the Stratix
10 components include features to enable higher operational speeds:

e DSP blocks have added pipeline registers and support a floating point mode.

e Memory blocks have additional logic for coherency and some restrictions related to
the width.

The high level steps in the migration process are:

1. Select for migration a lower-level block in the design, without any specialized IP.

2. Black-box any special IP component and only keep components which are required
for the current level you have selected. Only keep the following key blocks for core
performance evaluation:

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus

and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in Iso
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services 900}:2008
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any Registered
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel

customers are advised to obtain the latest version of device specifications before relying on any published

information and before placing orders for products or services.

*QOther names and brands may be claimed as the property of others.


http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
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e PLLs for generating clocks
e Core blocks (logic, registers, memories, DSPs)

Note: If you are migrating the design from a previous version of the Quartus
Prime software, you might have to replace some components if they are
incompatible with or unavailable in the current software version.

3. Maintain module port definitions when black-boxing components. Do not simply
remove the source file from the project.

4. Specify the port definition and direction of every component used in the design to
the synthesis software. Failure define the ports results in compilation errors.

5. During design synthesis, review the error messages and fix any missing port/
module definitions.

The easiest way to black-box a module is to empty its functional content. Below are
examples for black-boxing content depending on whether you are using Verilog HDL or
VHDL.

4.1.1 Black-boxing Verilog HDL Modules

In black-boxing Verilog HDL, keep the module definition but delete the functional
description.

Before:

// k-bit 2-to-1 multiplexer
module mux2tol (V, W, Sel, F);
parameter k = 8;
input [k-1:0] V, W;
input Sel;
output [k-1:0] F;
reg [k-1:0] F;

always @(V or W or Sel)

it (Sel == 0)
F =V;
else
F=W;
endmodule

After:

// k-bit 2-to-1 multiplexer
module mux2tol (V, W, Sel, F);
parameter k = 8;
input [k-1:0] V, W;

input Sel;
output [k-1:0] F;
endmodule
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4.1.2 Black-boxing VHDL Modules

In black-boxing VHDL, keep the entity as-is, but delete the architecture. In the case
when you have multiple architectures, make sure you remove all of them.

Before:

-- k-bit 2-to-1 multiplexer
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux2tol 1S
GENERIC ( k : INTEGER := 8) ;
PORT ( V, W : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
Sel : IN STD_LOGIC ;
F - OuUT STD_LOGIC_VECTOR(k-1 DOWNTO 0) ) ;
END mux2tol ;

ARCHITECTURE Behavior OF mux2tol 1S
BEGIN
PROCESS ( V, W, Sel )
BEGIN
IF Sel = "0" THEN
F<=V;
ELSE
F<=W;
END IF ;
END PROCESS ;
END Behavior ;

After:

-- k-bit 2-to-1 multiplexer
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux2tol 1S
GENERIC ( k : INTEGER := 8) ;
PORT ( V, Wz IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
Sel : IN STD_LOGIC ;
F : OuT STD_LOGIC_VECTOR(k-1 DOWNTO 0) ) ;
END mux2tol

ARCHITECTURE Behavior OF mux2tol IS

BEGIN
END Behavior ;

In addition to black-boxing modules, you must assign the modules to a an empty
design partition. The partition prevents the logic connected to the black-boxed
modules from being optimized away during synthesis.

To create a new partition:

1. In the Project Navigator Hierarchy tab, right-click the black-boxed module, and
then click Design Partition 0 Set as Design Partition.

For Empty, select Yes.
Add all the black-box modules into this partition.
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Figure 105. Create New Empty Partition

Mgﬂ Partitions Window B2® '
| Assignments View l Compila
Partition Name Hierarchy Path Reconfigurable = Preservation Level Empty *a
e LLnewe>
| ~auto _partition auto No | |Yes
1 speed_partition speed Mo Mo
tick_partition tick No | No
time_cnt time_c Ne No
L€ I [»]

Intel® Stratix® 10 High-Performance Design Handbook
94



4 HyperFlex Porting Guidelines

intel.

4.1.3 Clock Management

After black-boxing appropriate logic, ensure that all registers in the design are still
receiving a clock signal. All the PLLs must still be present. Identify any clock existing a
black-boxed module. If this occurs in your design, recreate this clock. Failure to
recreate the clock marks any register downstream as unclocked. This changes the
logic function of your design, because registers that do not receive a clock could be
removed by synthesis. Examine the clock definitions in the .sdc file to determine if a
clock is created in one of the black-boxed modules. Looking at a particular module,
several cases can happen:

e There is a clock definition in that module:

— Does the clock signal reach the primary output of the module and a clock pin
of a register downstream of the module?

e No: this clock is completely internal and no action required.

e Yes: create a clock on the output pin of that module matching the
definition in the .sdc.

e There is no clock definition in that module:
— Is there a clock feedthrough path in that module?
e No: there is no action required.
e Yes: create a new clock on the feedthrough output pin of the module.

4.1.4 Pin Assignments

Figure 106.

Black-boxing logic can cause some pin assignment issues. Use the following guidelines
to resolve pin assignments.

e Reassign high-speed communication input pins

The checks for the status of high-speed pins and generates some errors if these pins
are unconnected in the design. When you black-box transceivers, you may encounter
this situation. To address these errors, re-assign the HSSI pins to a standard I/0 pin.
Verify and change as needed the I/O bank.

High-speed Pin Error Messages
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ges

In the .gsfF file, it translates to the following:

set_instance_assignment
set_instance_assignment
set_instance_assignment
set_location_assignment
set_location_assignment
set_location_assignment

—name 10_STANDARD “2.5 V” —to hip_serial_rx_inl
—name 10_STANDARD “2.5 V” —to hip_serial_rx_in2
—name 10_STANDARD “2.5 V” —to hip_serial_rx_in3
10BANK_4A —to hip_serial_rx_inl
10BANK_4A —to hip_serial_rx_in2
10BANK_4A —to hip_serial_rx_in3

Intel® Stratix® 10 High-Performance Design Handbook
95



] ®
l n tel 4 HyperFlex Porting Guidelines

Figure 107. Pins Error Messages
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—7& 169085 llo exact pin location assignment (s) for 4 pins of 30 total pins. For the list of th
- @9 11802 Can't fit design in device
-3 177035 The input pin hip_serial_rx_in4 assigned to HSST Pin_A&H38 has no fanout.
Q 177035 The input pin hip_serial_rx_inS signed to HSSI Pin AF38 has no fanout.
0 177035 The input pin hip_serial rx iné assigned to HESSI Pin AD38 has no fanout.
-3 177035 The input pin hip_serial rx_in7 assigned to HSSI Pin_AEB38 has no fanout.
Q 177035 The input pin refclk clk assigned to HSS8I Pin AF34 has no fanout.
0 293001 Quartus II Flow was unsuccessful. B errors, 650 warnings
Quartus II 64-Bit I/0 Assignment Analysis was unsuccessful. 6 errors, 5 warnings
10041 Inferred latch for "reconfig_mgmt_read" at altpcie reconfig_driver.sv (446)
10264 Verilog HDL Case Statement infermaticon at alt : - reconfig adce datactrl s

isages

v (799

al
Dangling pins

If you have high-speed I/0 pins dangling because of black-boxing components, set
them to virtual pins. You can enter this assignment in the Assignment Editor, or in
the .gsfT file directly, as shown below:

set_instance_assignment —name VIRTUAL_PIN ON —to hip_serial_tx_inl
set_instance_assignment —name VIRTUAL_PIN ON —to hip_serial_tx_in2
set_instance_assignment —name VIRTUAL_PIN ON —to hip_serial_tx_in3

GPIO pins

If you have GPIO pins, make them virtual pins using this qsf assignment:

set_instance_assignment VIRTUAL_PIN —to *

4.1.5 Transceiver Control Logic

Your design may have some components with added logic that controls them. For
example, you might have a small design which controls the reset function of a
transceiver. You can leave these blocks in the top-level design and their logic is
available for optimization.
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4.1.6 Upgrade Outdated IP Cores

The Quartus Prime software alerts you to outdated IP components in your design.
Unless black-boxed, upgrade every outdated IP component to the current version:

1. Click Project 0 Upgrade IP Components to upgrade the components to the
latest version.

2. To upgrade one or more IP cores that support automatic upgrade, ensure that you
turn on the Auto Upgrade option for the IP core(s), and click Perform
Automatic Upgrade. The Status and Version columns update when upgrade is
complete. Example designs provided with any IP core regenerate automatically
whenever you upgrade an IP core.

3. To manually upgrade an individual IP core, select the IP core and click Upgrade in
Editor (or simply double-click the IP core name). The parameter editor opens,
allowing you to adjust parameters and regenerate the latest version of the IP core.

Note: Some IP components cannot upgrade for Stratix 10 devices. If those
components are critical (for example, PLL), modify your design and replace
them with Stratix 10-compatible IP components.

4.2 Top-Level Design Considerations

I/0 constraints

In order to get the maximum performance from register retiming, wrap the top-level
in a register ring and remove the following constraints from your SDC file:

e set_input_delay
e set _output_delay

These constraints model how much time out of a given clock period is used outside of
the block itself. For the purposes of analyzing the effect of design optimizations, you
want to use all the available slack within the block itself. This helps maximize
performance at the module level. These constraints can be added back when moving
to full chip timing closure.

Resets

If you remove reset generation from the design, provide a replacement signal by
direct connection to an input pin of your design. This configuration may affect the
retiming capabilities in Stratix 10 architectures. Add a couple of pipeline stages to
your reset signal. This helps the Compiler to optimize between the reset input and the
first level of registers.
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Special Blocks

Retiming does not automatically change some components. Some examples are DSP
and M20K blocks. In order to achieve higher performance through retiming, manually
recompile these blocks. Look for the following conditions:

e DSPs: Watch the pipelining depth. More pipeline stages results in a faster design.
If retiming is limited by the logic levels in a DSP block, add more pipeline stages.

e M20Ks: Retiming relies heavily on the presence of registers to move logic around.
With M20K blocks, you can help the by registering the logic memory twice:

— Once inside the M20K block directly
— Once in the fabric, at the pins of the block

Register the Block

Register all inputs and all outputs of your block. This register ring mimics the way the
block is driven when embedded in the full design. The ring also avoids the retiming
restriction associated with registers connected to inputs/outputs. The first and last
level of registers should now be able to retime more realistically.
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5 Designh Example Walk-Through

The Median Filter design example illustrates how Hyper-Retiming and Fast-Forward
compilation improve performance in a real-world design. This walk-through describes
project setup, design compilation, interpreting results, and optimizing RTL.

Figure 108. Median Filter Operational Diagram
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5.1 Median Filter Designh Example

This walk-through uses an image processing median filter design to illustrate use of
Fast-Forward compilation and Hyper-Retiming. The median filter is a non-linear filter
that removes impulsive noise from an image. These filters require the highest

performance. The design requirement is to perform real time image processing on a
factory floor.!

1 This median filter design was first presented in a paper titled "An FPGA-Based Implementation
for Median Filtering Meeting the Real-Time Requirements of Automated Visual Inspection
Systems” at 10th Mediterranean Conference on Control and Automation, Lisbon, Portugal,

2002. The design is publicly available under GNU General Public License as published by the
Free Software Foundation.
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5 Design Example Walk-Through

Note: Intel provides supporting design example project and design files for this walk-
through. Download the supporting median.zip file available with this document.
Unzip the file to use and refer to a complete, verified design example, including all
project files, constraint files, design files, and example RTL.

Figure 109. Before and After Images Processed with Median Filtering

T RATE B

5.1.1 Step 1: Setup the Project

Follow these instructions to setup the Median Filter design example project. The
design example project includes the median.sdc file that defines the single clock
single that drives the design. The design example uses this clock definition throughout

the design.

1. Download and extract the Median Filter design example.

2. Open the median.gsT project in the Quartus Prime Pro v17.1 Stratix 10 ES
Editions software.

3. Click Assign 0 Device and confirm the following device assignment settings:

e Device family: Stratix 10 (GX/SX).
e Device: 1SG280LN3F43E1VG (Advanced)

4. All I/Os in the example design are set as "virtual" pins, meaning that the Fitter
does not actually connect them to real device pins. To view the state of these
virtual pins, click Assignments 0 Assignment Editor.

5. The Compiler runs the Retime and Fast Forward compilation stages by default
during full compilation. To verify these settings, click Assignments [0 Settings 0
HyperFlex.

6. Click Tools 0O TimeQuest Timing Analyzer. Define all clocks and specify a 1
GHz clock frequency requirement. TimeQuest saves these settings in a Synopsys
Design Constraints (.sdc) file. Alternatively, you can create the .sdc file
manually.

7. Click Assignments 0 Assignment Editor and assign the Virtual Pin option to

all pins.
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Figure 110. HyperFlex Settings

intel.
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~IP Catalog Search Locations
Design Templates
[ Operating Settings and Conditic
~ Voltage
- Temperature
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- Verilog HDL Input
- Default Parameters
HyperFlex
TimeQuest Timing Analyzer
Assembler
Signal Tap Il Logic Analyzer
- Logic Analyzer Interface
PowerPlay Power Analyzer Sett

&0
Device/Board... }

Specify HyperFlex optimization settings for the Compiler. These settings control the optimization
algorithms that will be performed throughout design compilation

«
D

HyperFlex

Enabled Hyper-Retimer (Hyper Aware CAD and retiming optimization)

¥ Run Fast Forward Timing Closure Recommendations during compilation

Fast Forward Timing Closure Recommendations analyzes your design and provides
recommendations for how to restructure your RTL to overcome performance bottlenecks

To customize exploration settings globally, open the Advanced Settings dialog. For more
infarmation about Advanced settings, please open the Stratix 10 Hyper-Optimization Advisor.

Advanced Settings...

Fast Forward
Advanced Options

5.1.2 Step 2: Run Fast-Forward Compilation

Fast Forward compilation runs during full compilation, or you can run the process
separately. Your design must successfully run through the previous compilation stages
before Fast Forward Compile.

On the Compilation Dashboard, click Fast Forward Timing Closure
Recommendations. The Compiler runs all modules in sequence through Fast
Forward compilation.

View the analysis in the Fast Forward Timing Closure Recommendations
folder of the Compilation Report.

1.

5.1.3 Step 3: View Fast-Forward Recommendations

The Compiler generates detailed reports following register retiming and Fast Forward
compilation. View the results of retiming in the Retime Stage section of the Fitter
Report. View the results of Fast Forward analysis in the Fast Forward Timing
Closure Recommendations reports.
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5.1.4 Step 4: Implement Fast Forward Recommendations

Figure 111.

Fast Forward compilation recommends steps to improve performance on specific
paths. Consider Fast Forward recommendations, make appropriate changes in your
design RTL, and then recompile the design to realize the performance gains.

The amount and type of changes that you implement depends on your performance
goals. For example, if you can achieve the target fyax with simple asynchronous clear
removal or conversion, your optimization can end. However, if you require additional
performance, implement more Fast Forward recommendations, such as any of the
following techniques:

e Remove limitations of control logic, such as long feedback loops and state
machines.

e Restructure logic to use functionally equivalent feed-forward or pre-compute
paths, rather than long combinatorial feedback path.

¢ Reduce the delay of ‘Long Paths’ in the chain. Use standard timing closure
techniques to reduce delay. Excessive combinational logic, sub-optimal placement,
and routing congestion cause delay on paths.

¢ Insert more pipeline stages in ‘Long Paths’ in the chain. Long paths have the most
delay between registers in the critical chain.

e Increase the delay (or add pipeline stages to ‘Short Paths’ in the chain).

Explore performance and implement the RTL changes to your code until you reach the
desired performance target.

In the design example, the presence of asynchronous signals (resets in the design)
affects retiming abilities. As a starting point for handing resets, ensure that resets are
synchronous. The RTL guidelines in this document describe appropriate reset
strategies.

Asynchronous Reset in State Machine RTL

if({walid) begin
waddr +

dge clk or negedge
counter
) begin
lumn_counter
window_line_counter
raddr_a |
raddr_b f
1

raddr_c
end el I n

if ndow_column_counter !'= (| )-1)) begin
window_column_counter window_column_counter +
valid
raddr_a raddr_a +
raddr_b raddr_b +
raddr_c raddr_c +
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Figure 112. Synchronous Reset in State Machine RTL

clk
out_memory_counter
r n ]

waddr

valid
waddr <= waddr

f clk
addr_counter
rst n
window_column_counter
window_line_counter
raddr_a :
raddr_b -
raddr_c

After changes to synchronous reset, the design example can still benefit from an
additional stage of pipeline registers. The Fast Forward Details report lists the
specific location to add these registers. Add registers at either the path source or
destination. The Fitter choses the optimal placement automatically.

Figure 113. Fast Forward Compilation Improvement
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RTL loops are one of the most significant factors impacting fyax performance. You can
view more detail about this limit in the Fast Forward Details report. The report lists
the paths in the loop and all the convergence points. Depending on the size of the
loop, it can be somewhat difficult to visualize from the report. Visualize the critical
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chains by Right-clicking 0 Locate Critical Chain. The Technology Map Viewer
abstracts combinational logic with cloud icons. Expand this logic by clicking on the +

sign.

Figure 114. Fast Forward Details
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As shown in the report, the loop involves register window_column_counter. We can
review and modify the RTL to improve performance.
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Figure 115. Non-Optimized RTL

always @(posedge clk)
begin : addr_counter
if(~rst_n_reg) begin
window column_counter == 10'd0;
window line counter == 2'b00;
raddr a <= {LUT_ADDR WIDTH{1'b0}};
raddr_b <= {LUT_ADDR_WIDTH{1'b0}};
raddr_c <= {LUT_ADDR_WIDTH{1'b0}};
end else begin

1f(window_column_counter != ((IMG_WIDTH/4)-1}) begin
window_column_counter == window_column_counter + 1'b1;
valid == 1'bl;

raddr a == raddr a + 1'b1;
raddr b == raddr b + 1'b1;
raddr ¢ == raddr c + 1'b1;
end else begin
window_column_counter == 10'd0;
case (window line_counter)
2'boo
begin
raddr a == raddr_a + 1'bl;
raddr_b == raddr_b - window_column_counter;
raddr_c == raddr_c - window_column_counter;
window_line_counter = window_line_counter + 1'bl;

end
2'b01 :
begin
raddr b == raddr b + 1'b1;
raddr a == raddr_a - window column counter;
raddr ¢ == raddr_c - window column counter;
window line counter = window line counter + 1'bl;
end
2'blf -

Notice that window_column_counter performs some arithmetic operations inside
multiple condition statements. However, the condition test is constant and can be
computed once. We can also pre-compute the window_column_counter + 1 on
each clock. This technique avoids arithmetic operations inside the critical chain loop,
and simply selects the result within the if-then-else statement. This strategy results in
a more efficient implementation.
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Figure 116. Optimized RTL

reg [9:0] window_column_counter_plus_one;

reg rst_n_reg;

wire window column_counter test;

assign window_column counter test = ((IMG WIDTH/4)-1) 7 1 : 0O;

always @(posedge clk)
begin : out_memory_counter
if(~rst_n_reg) begin
waddr <= {LUT ADDR WIDTH{1'b0}};
end else 1f({valid) begin
waddr == waddr + 1'b1;
end
end

always @(posedge clk)
begin

rst n reg == rst_n;

window _column_counter plus one == window_column _counter + 1'b1;
end

always @(posedge clk)
begin : addr_counter
if(~rst_n reg) begin
window_column_counter <= 10'dD;
window_Lline_counter <= 2'b00;
raddr_a <= {LUT ADDR WIDTH{1'b0}};
raddr_ b <= {LUT_ADDR_WIDTH{1'b0}};
raddr_c <= {LUT_ADDR_WIDTH{1'b0}};
end else begin
1T 'window_column_counter_test) begin
window column_counter == window column_counter plus one;
valid == 1'b1;
raddr_a == raddr_a + 1'b1;
raddr_ b == raddr b + 1'b1;
raddr c == raddr_c + 1'b1;
end else begin
window column_counter == 10'd0;
case (window_line_counter)
2'bo0 :
begin

After making RTL changes, click Processing 0 Start Compilation to compile the
design. Correcting the asynchronous reset conditions, adding pipeline stages, and
avoiding large loops significantly improves this design example performance to 1152
MHz on Fast Forward Step #2 (Hyper-Pipelining).
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Figure 117. Fast Forward Details Report
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6 Optimization Example

This section contains a round robin scheduler optimization example.

6.1 Round Robin Scheduler

The round robin scheduler is a basic functional block. The following example uses a
modulus operator to determine the next client for service. The modulus operator is
relatively slow and area inefficient because it performs division.

Example 16. Source Code for Round Robin Scheduler

The module is instantiated in a register ring and compiled.

module round_robin_modulo # (
parameter LOG2_CLIENTS
parameter CLIENTS

// previous client to be serviced
input wire [LOG2_CLIENTS -1:0] last,

// Client requests:-
input wire [CLIENTS -1:0] requests,

// Next client to be serviced: -
output reg [LOG2_CLIENTS -1:0] next,

};
//Schedule the next client in a round robin fashion, based on the previous

always @*
begin
integer J, K;

begin : find_next
next = last; // Default to staying with the previous
for (O = 1; J < CLIENTS; J=J+1)
begin
K = (last + J) % CLIENTS;
if (requests[K] == 1"b1)
begin
next = K[O +: Log2_CLIENTS];
disable find_next;
end
end // of "find_next”
end

endmodule
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Figure 118. Fast

intel.

Forward Compile Report for Round Robin Scheduler

Fast Forward Summary for Clock Domain clk_mod |

I Step I Fast Forward Optimizations Applied I To Achieve Fmax I Slack I Requirement I Limiting Reason ]
1 Base Performance 0. including 0 pipeline stages 289.6 MHz 1.547 4970 Insufficient Registers
2 Fast Forward Step #1 |10, including 1 pipeline stage 468.82 MHz 2867 4970 Short Path/Long Path
3 FastForward Step #2 |10, including 2 pipeline stages 499.0 MHz 2996 4970 Short Path/Long Path
4 | Hyper-Optimization 10, including 2 pipeline stages - 4970 Short Path/Long Path

The Fast Forward Summary report identifies insufficient registers limiting Hyper-
Retiming on the critical chain. The chain is from the register that connects to the last
input, through the modulus operator implemented with an LPM_DIVIDE IP core, to
the register connected to the next output.

Figure 119. Criti

cal Chain for Base Performance for Round Robin Scheduler

Critical Chain at Limit ] Recommendations for Critical Chain |

| Path Info | Register | Join | Element
1 Demain Boundary Entry #1
2 Long Path empty slot round_robin_med _last_r{1]]asdata
3 Long Path REG (required) round_robin_mod_last_r[1]
4 Long Path round_robin_mod_last_r{1]|q
5 Long Path round_robin_mod_last_rf1]~la_lab/laboutb[4]
& Long Path round_robin_mod _last_rf1]~LAB RE_X77_Y198 NO 1114
7 Long Path empty slot round_robin_mod _last_r1]~R3_X75_Y198 NO_I23
Long Path empty slot round_robin_mod_last_r{1]~C4_X75_¥199 _NO_I21
9 Long Path empty slot round_robin_mod_last_r{1]~LOCAL INTERCONNECT X76_Y199 NO_I33
10 Long Path round_robin_mod_last_r{1]~LAB_RE_X76_Y199 NO_I0
11 Long Path empty slot rrm|Mod3|auto_generated|divider|divider|op_3~5|dataf
12 Long Path rmm|Mod3|auto_generated|divider|divider|op_3~9|cout
13 Long Path rmm|Mod3|auto_generated|divider|divider|op_3~13|cin
14 Long Path rmm|Mod3|auto_generated|divider|divider|op_3~1|sumout
15| Long Path round_robin_modulo:rrm|lpm_divide :Mod3|lpm_d...t u_div_vke:divider|op_3~1la_mlab/laboutt{7]
16 Long Path round_robin_modulo:rrm|lpm_divide :Mod3|lpm..._vke:dividerjop_3~1_LAB_RE_X76_Y199_N0_I97
17 Long Path empty slot round_robin_modulo:rrm|Ipm_divide Mod3|l...p_3~1_LOCAL_INTERCONNECT_X76_Y199_NO_I26
18 | ong Path. raungd robin_modulo:rrm|lpm_divide Mod3|lpm..._vke-dividerjop_3~1_LAB_RE_X76_Y199_N0_I43
54 Long Path empty slot round_robin_mod_next{0]~4_C4_X7T3_TI99_WU_TIT
55 Long Path empty slot round_robin_mod_next{0]~4_R6_X75_Y200_N0_I&
56 Long Path empty slot round_robin_mod_next{0]~4_LOCAL_INTERCONNECT_X76_Y200_NO_I8
57 Long Path round_robin_mod_next{0]~4_LAB_RE_X76_Y200_NO_I60
58 Long Path empty slot rrm|next{2]~5|datac
59 Long Path rmm|next{2]~5|combout
60 Long Path round_robin_mod_next{2]~reg0|d
61 Long Path REG (required) round_robin_mod_next{2]~reg0
62 Long Path round_robin_mod_next{2]~reg0|q
63 Long Path round_robin_mod_next[2]~reg0la_mlab/laboutb[8]
64 Long Path round_robin_mod_next{2]~reg0_LAB_RE_X76_Y200_NO0_i118
65 Long Path empty slot round_robin_mod_next{2]~reg0_C4_X76_Y196_NO0_I34

66 Domain Boundary Entry #2

The 66 elements in the critical chain above, correspond to the circuit diagram below

with

13 levels of logic. The modulus operator contributes significantly to the low

performance. Nine of the 13 levels of logic are part of the implementation for the
modulus operator.

Figure 120. Schematic for Critical Chain

e

-

Fast
pipel

Forward compilation estimates a 70% performance improvement from adding two
ine stages at the module inputs, to be retimed through the logic cloud. At this

point, the critical chain is a short path/long path and it involves the modulus operator.
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Figure 121. Critical Chain Fast Forward Compile for Round Robin Scheduler

Fast Forward Optimizations Applied in Clock Domain clk_moed  Critical Chain at Limit | Recommendations for Critical Chain |
| Path Info I Register | Join | Element
1 REG (required) #1 round_robin_mod_requests_r{2]
2 |Short Path round_robin_mod_requests_r{2]|q
3 | Short Path unusable (hold) rm|Mux4~0|datae
4 rm|Mux4~0|combout
e round_robin_modulo:rrm|Mux4~0la_mlab/aboutt[13]
6 round_robin_medulo:rrm|Mux4~0_LAB _RE_X76_Y198_NO_|103
7 REG #2 round_robin_modulo:rrm |Mux4~0_LOCAL_INTERCONNECT_X75_Y198_N0_I3_dff
I 7 [ e mmmmmmmmmmmmememmmemememmmemee,, eeemmemmeemememesemememsememmmmnememmemeemmemeeseemmmmmnn
9 REG (required) #1
10| Long Path round_robin_mod_requests_r{2]|q
11 Long Path unusable (hold) rm|Mux4~0|datae
12|Long Path rm|Mux4~0|combout
13|Long Path round_robin_modulo:rrm|Mux4~0la_mlab/laboutt[13]
14|Long Path round_robin_modulo:rrm|Mux4~0_LAB_RE_X76_Y198_N0_I103
15| Long Path REG round_robin_meodulo:rrm|Mux4~0_LOCAL INTERCONNECT X75_Y198_NO_I3_dff
16 | ono Pats Scabio_modulg- rrm Mux4~0_LOCAL_INTERCONNECT_X75_Y138_NO_I3
33 Long Path empty slot rrm|next[1]~3|datac
34 Long Path rrm|next[1]~3|combout
35 Long Path round_robin_mod_next{1]~reg0|d
36 Long Path REG (required) #3 round_robin_meod_next[1]~reg0
= 7| ettt Eectetetetntintinte ----
38 REG #4 round_robin_mod_last r{1]~LOCAL _INTERCONNECT_X75_Y198_NO_I47_dff
39 Short Path round_robin_mod_last_r{1]~LOCAL_INTERCONNECT_X75_Y198 NO_l47
40 Short Path round_robin_mod_last_r{1]~LAB_RE_X75_Y198_NO_I19
41 Short Path REG round_robin_medulo:rrm|next{1]~3_datab_dff
432 Short Path rrm|next[1]~3|datab
43| Short Path rrm|next[1]~3|combout
44 Short Path round_robin_meod_next{1]~reg0|d
45 REG (required) #3 round_robin_mod_next{1]~reg0
L e Lttt e B e et ittt D e et ettt ettt
47|Long Path | REG #4 round_robin_maod_last_r[1]~LOCAL_INTERCONNECT_X75_Y198_NO_|47_dff
48| Long Patn round_robin_mod_last_r[1]~LOCAL_INTERCONNECT_X75_Y198 NO_|47
49 Long Path round_robin_mod_last_r{1]~LAB_RE_X75_Y198_NO_I3
50 |l ono Batl. Woddlagtn geperated|divider|dividerjop_3~9|datab
ey T T = -
GB;Long Path empty slot || Modd4|auto_generated|divider|divider|StageOut[12]~0[datab
69 Long Path rrm|Mod4|auto_generated|divider|divider|StageOut[12]~0|combout
#tl|Long Path Jpaund fobiin: modiiozrm|ym. divide:Modd|lpm ... vie:divider StaqeCU12]-0la IabAshouthil )
71|Long Path | round_robin_modulo-rrm |lpm_divide:Mod4|ip. ..er|StageOul{12]~0_LAB RE_X75_Y198_NO_I122
72 Long Path empty slot round_robin_modulo:rrm|lpm_divide:Mod4|l...12]~0_LOCAL _INTERCONNECT_X76_Y198_N0_I58
73 Long Path round_robin_modulo:rrm|lpm_divide:Mod4|lpm...ider|StageOut{12]~0 _LAB RE_X76_Y198_NO_I28
74 Long Path empty slot rrm|Mux4~0|datac
75 Long Path rrm|Mux4~0|combout
76|Long Path round_robin_medulo:rrm|Mux4~0la_mlab/laboutt[13]
77 Long Path reund_robin_modulo:rrm|Mux4~0_LAB RE_X76_Y198 NO_I103
78 Long Path REG #2 round_robin_modulo:rrm |Mux4~0_LOCAL INTERCONNECT_X75_Y198_NO_I3_dff

The divider in the modulus operation is the bottleneck that requires RTL modification.
Paths through the divider exist in the critical chain for all steps in the Fast Forward
compile. Consider alternate implementations to calculate the next client to service and
avoid the modulus operator. If you switch to an implementation that specifies the
number of clients as a power of two, a modulus operator is not required to determine
the next client to service. When you instantiate the module with fewer than 2" clients,
tie the unused request inputs to logic 0.

Example 17. Source Code for Round Robin Scheduler with Improved Performance with 2"

Client Inputs

module round_robin # (

parameter LOG2_CLIENTS = 3,
parameter CLIENTS = 2**L0G2_CLIENTS)

// Previous client to be serviced:-
input wire [LOG2_CLIENTS -1:0] last,
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// Client requests:-
input wire [CLIENTS -1:0] requests,

// Next client to be serviced:-
output reg [LOG2_CLIENTS -1:0] next

//Schedule the next client in a round robin fashion, based on the previous
always @(next or last or requests)
begin
integer J,K;

begin : find_next
next = last; // Default to staying with the previous
for (J=1; J<CLIENTS; J = J+1)
begin
K= last + J;
iT (requests[k]O +: LOG2_CLIENTS]] == 1"bl)
begin
next = K[O +: LOG2_CLIENTS];
disable find_next;
end
end
end// of "find_next"
end

endmodule

Even without any Fast Forward optimizations, this round robin implementation runs
almost 15% faster than the best Fast Forward compilation result with the modulus

operator.

Figure 122. Fast Forward Summary Report for Round Robin Scheduler with Improved
Performance with 2" Client Inputs

Fast Forward Summary for Clock Domain clk I

I Step | Fast Forward Optimizations Applied I To Achieve Fmax I Slack | Requirement I Limiting Reason
1 Base Performance 0, including 0 pipeline stages 570.13 MHz 3.246 4970 Insufficient Registers
2 Fast Forward Step #1 |10, including 1 pipeline stage 976.56 MHz 3976 4970 Insufficient Registers
3 Fast Forward Step #2 10, including 2 pipeline stages 1011.12 MHz 4.011 4970 Short Path/Long Path
4 | Hyper-Optimization 10, including 2 pipeline stages . . 4970 Short Path/Long Path

Without any Fast Forward optimization (the Base Performance step), the critical chain
in this version also has the performance limiting reason of insufficient registers.
Although critical chains in both versions contain only two registers, the critical chain
for the 2" version contains only 38 elements, compared to 66 elements in the modulus

version.
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Figure 123. Critical Chain for Round Robin Scheduler with Improved Performance

Critical Chain at Limit | Recommendations for Critical Chain I
Path Info | Register I Join | Element

1 Domain Boundary Entry; #1

2 Long Path empty slot round_robin_requests_r{0]|asdata

3 Long Path REG (required) round_robin_requests_r[0]

4 |Long Path round_robin_requests_r{0]|q

5 |Long Path round_robin_requests_r{0]~la_lab/laboutt{18]

6 |Long Path round_robin_requests_r{0]~LAB_RE_X77_Y198 NO_|108

7 |Long Path empty slot round_robin_requests_r[0]~R6_X72_Y198_N0_l44

8 Long Path empty slot round_robin_requests_r{0]~C4_X75_Y199_N0_|19

9 Long Path empty slot round_robin_requests_r[0]~LOCAL_INTERCONNECT X76_Y200_NO_145
10 Long Path round_robin_requests_r[0]~LAB_RE_X76_Y200_N0_I50

11/Long Path oty siot rti~19|dataa
il | T |
28 Long Path empty slot round_robin:rrjnext{0]~0_LOCAL_INTERCONNECT_X77_Y200_NO_I55
29 Long Path round_robin:rrnext[0]~0_LAB_RE_X77_Y200_NO_I1

30 Leng Path empty slot rr|next{0]~1|datae

31 Long Path rrinext{0]~1|combout

32 Long Path round_robin_next{0]~reg0|d

33 Long Path REG (required) round_robin_next[0]~reg0

34 Long Path round_robin_next[0]~reg0|q

35| Long Path round_robin_next[0]~reg0la_lab/laboutt[1]

36 Long Path round_robin_next{0]~regd_LAB_RE_X77_Y200_NO_|91

37 Long Path empty slot round_robin_next{0]~reg0_R3_X77_Y200_NO_I1

38 Domain Boundary Entry #2

The 38 elements in the critical chain above correspond to the following circuit diagram
with only four levels of logic.

Figure 124. Schematic for Critical Chain with Improved Performance

round_robin_requests_r{0] i~24 round_robin
tl~19 1-3
- 0]-1
————— [aTan :;:: nnr::n( ] 1-8 round_robin_nex{0]~reg0
—{oaTas
Tere o —:::: comeouT] next[o]~0 ——::ﬁ - -
T —{paTar ——— ——foamac  com TRE
::g:: —{oaTas oo —paTan ~ —{oaTar
oG “COMB (33550F550 s —|oarar
LOGIC_CELLCOMB (347744 71 SifeEER}-COMB (33550F550F55poss) L§GiC_CELL_COMB (FOFOOFOF20202D20

LPGIC_CELL_COMB (00500050FQFOFOFO)

By adding two register stages at the input, to be retimed through the logic cloud, Fast
Forward Compile takes the circuit performance to 1 GHz, which is the architectural
limit of Stratix 10 devices. As with the modulus version, the final critical chain after
Fast Forward optimization has a limiting reason of short path/long path, but the
performance is double the performance of the modulus version.

Intel® Stratix® 10 High-Performance Design Handbook
112



6 Optimization Example

intel.

Figure 125. Critical Chain for Round Robin Scheduler with Best Performance

Fast Forward Optimizations Applied in Clock Domain clk  Critical Chain at Limit | Recommendations for Critical (
Path Info Register | Join | Element
1 empty slot #1 rtl~4|dataf
|2 |#2 |rti~4|combout
Y- [ ——"  Eeiel Intetuceisetissietsisetehisiteissaissdstst ettt
4 REG (required) | #3 round_robin_last r{1]
5 Short Path ‘round_robin_\ast_r[1]|q
& Short Path unusable (hold) | rti~4|datae
|7 |#2 |rti~4]combout
- [ [ SRR
9 REG (reguired) | #3 |round_robin_last_r{1]
10 Long Path round_robin_last_r[1]|q
11 Long Path round_robin_last r[1]~la_mlab/laboutb[16]
12 Long Path [round_robin_last_r{1]~LAB_RE_X76_Y200_NO_I126
13 Long Path empty slot round_robin_last r{1]~R6_X71 Y200 _NO 114
14 Long Path empty slot round_robin_last_r[1]~LOCAL_INTERCONNECT_X76_Y200_NO_|13
— T ETTTpTy S0t T = .
35|Long Path round_robin:ir|next{0]~0_LAB_RE_X77_Y200_N0_I1
36| Long Path empty slot rr|next[0]~1|datae
|37|Long Path (rrinext[0]~1|combout
38 Long Path round_robin_next[0]~reg0|d
|39|Long Path REG (required) |#4 |round_robin_next[0]~reg0
40|---------- BT
41 | #5 round_robin_last_r[0]~LAB_RE_X76_Y200_NO_|122
42 Short Path unusable (hold) round_robin_last_r{0]~LOCAL_INTERCONNECT_X77_Y200_NO_I34
|43 Short Path (round_robin_last_r{0]~LAB_RE_X77_Y200_N0_l4
44 Short Path REG round_robin:rrjnext[0]~1_datac_dff
145 (rrinext[0]~1|datac
46 rr|next[0]~1|combout
a7 | round_robin_next[0]~reg0|d
48 REG (required) #4 round_robin_next[0]~reg0
ﬂ.......... e — | el
50 #5 round_robin_last_r{0]~LAB_RE_X76_Y200_N0_I122
151 empty slot (round_robin_last_r{0]~LOCAL_INTERCONNECT_X76_Y200_NO_I21
52 round_robin_last_r{0]~LAB_RE_X76 Y200 _NO |72
53 empty slot #1 rti~4|dataf

Figure 126. Schematic for Critical Chain with Best Performance
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Removing the modulus operator and switching to a power-of-two implementation is a
very small design change that provides a dramatic performance increase.

Use natural powers of two for math operations whenever possible

Explore alternative implementations for seemingly basic functions.

In this example, changing the implementation of the round robin logic provided more
performance increase than adding pipeline stages.
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7.1 Appendix A: Parameterizable Pipeline Modules

The following examples show parameterizable pipeline modules in Verilog HDL,
SystemVerilog, and VHDL. Use these code blocks at top-level I/Os and clock domain
boundaries to change the latency of your circuit.

Example 18. Parameterizable Hyper-Pipelining Verilog HDL Module

// Hyper-pipelining module HyperPipe Intel Version 2014/08/12
(* altera_attribute = "-name AUTO_SHIFT_REGISTER_RECOGNITION off" *)
module hyperpipe # (
parameter CYCLES
parameter WIDTH,
) C .
input clk,
input [WIDTH-1:0] din,
output [WIDTH-1:0] dout

generate
if (CYCLES==0) begin : GEN_COMB_INPUT
assign dout = din;
end
else begin : GEN_REG_INPUT
integer i;
reg [WIDTH-1:0] R_data [CYCLES-1:0];

always @(posedge clk) begin

R_data[0] <= din;

for(i=1;i<CYCLES;i=i+1) R_data[i] <= R_data[i-1];

end

assign dout = R_data[CYCLES-1];
end
endgenerate
endmodule

Example 19. Parameterizable Hyper-Pipelining Verilog HDL Instance

// Instantiation Template:
hyperpipe # (
-CYCLES ()
-WIDTH (
) hp (
-clk (
(
(

)

1 )

-din D)

.dout D)
):

Example 20. Parameterizable Hyper-Pipelining SystemVerilog Module

// Hyper-pipelining module HyperPipe Intel Version 2014/08/12
(* altera_attribute = "-name AUTO_SHIFT_REGISTER_RECOGNITION off" *)
module hyperpipe_2d # (
parameter CYCLES
parameter PACKED_WIDTH,
parameter UNPACKED_WIDTH,
) C .
input clk,
input [PACKED_WIDTH-1:0] din [UNPACKED_WIDTH-1:0],
output [PACKED_WIDTH-1:0] dout [UNPACKED_WIDTH-1:0]
)

generate
if (CYCLES==0) begin : GEN_COMB_INPUT
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assign dout = din;
end
else begin : GEN_REG_INPUT
integer i;
reg [PACKED_WIDTH-1:0] R_data
[CYCLES-1.0][UNPACKED_WIDTH-1:0];

always @(posedge clk) begin
R_data[0] <= din;
for(i=1; i<CYCLES; i=i+1)

R_data[i] <= R_data[i-1];

end

assign dout = R_data[CYCLES-1];

end
endgenerate

Example 21. Parameterizable Hyper-Pipelining SystemVerilog Instance

// Instantiation Template:
hyperpipe # (
.CYCLES )
.PACKED_WIDTH (),
.UNPACKED_WIDTH ( ),

) hp (
.clk (),
din (),
.dout ()
)

Example 22. Parameterizable Hyper-Pipelining VHDL Entity

-- HyperPipe Intel Version 2014/08/12
library I1EEE;

use IEEE.std_logic_1164.all;

library altera;

use altera.altera_syn_attributes.all;

entity hyperpipe is

generic (
CYCLES : integer
WIDTH : integer;
)E
port (

clk : in std_logic;

din : in std_logic_vector (WIDTH - 1 downto 0);
dout : out std_logic_vector (WIDTH - 1 downto O)

)
end hyperpipe;

architecture arch of hyperpipe is

-- Prevent large hyperpipes from going into memory-based

altshift_taps,

-- since that won"t take advantage of Hyper-Registers

attribute altera_attribute of hyperpipe :

entity is ""-name AUTO_SHIFT_REGISTER_RECOGNITION off';

type hyperpipe_t is array(CYCLES-1 downto 0) of

std_logic_vector(WIDTH-1 downto 0);
signal HR : hyperpipe_t;

begin
wire : if CYCLES=0 GENERATE

-- The 0 bit is just a pass-thru, when CYCLES is set to O

dout <= din;
end generate wire;
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hp : if CYCLES>0 GENERATE
process (clk) begin
if (clk"event and clk="1")then
HR <= HR(HR"high-1 downto 0) & din;
end if;
end process;
dout <= HR(HR"high);
end generate hp;

end arch;

Example 23. Parameterizable Hyper-Pipelining VHDL Instance

-- Template Declaration
component hyperpipe
generic (
CYCLES : integer
WIDTH : integer;

):
port (
clk : in std_logic;

din : in std_logic_vector(WIDTH - 1 downto 0);
dout : out std_logic_vector(WIDTH - 1 downto 0)

):
end component;

-- Instantiation Template:
hp : hyperpipe
generic map (
CYCLES =>
WIDTH => ,

port map (
clk =>,
din => ,
dout =>

)
7.2 Appendix B: Clock Enables and Resets

7.2.1 Synchronous Resets and Limitations

Converting asynchronous resets to synchronous helps retiming, but there are still
performance restrictions. The ALM register's dedicated LAB-wide signal often performs
synchronous clears. The signal’s fan-out determines use of this signal during
synthesis. A synchronous clear with a small fan-out is usually performed in logic, while
larger fan-outs use this dedicated signal. Even if synthesis determines use of the
synchronous clear, the Compiler still retimes the register into Hyper-Registers. The
bypass mode of the ALM register enables this functionality. When the Compiler
bypasses the register, the sclr signal and other control signals remain accessible.
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In the following example, the LAB-wide synchronous clear feeds multiple ALM
registers. A Hyper-Register is available along the synchronous clear path for every
register.

Figure 127. Retiming Example for Synchronous Resets

Circles represent Hyper-Registers and rectangles represent ALM registers. An unfilled
object represents an unoccupied location and a blue-filled one is occupied.
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During retiming, the top register in row (a) is pushed right into a Hyper-Register. This
is achieved by bypassing the ALM register, but still using the SCLR logic that feeds that
register. When the LAB-wide SCLR signal is used, an ALM register must exist on the
data path, but it does not have to be used.

Register retiming pushes the register in row (b) left into its data path. The register
pushes through a signal split of the data path and synchronous clear. This register
must be pushed onto both nets, one in the data path and one in the synchronous clear
path. This can be implemented because each path has a Hyper-Register.

Retiming becomes complicated if another register is pushed forward into the ALM. As
shown in the following figure, a register from the asynchronous clear port and a
register from the data path must be merged together.

Figure 128. Retiming Example - Second Register Pushed out of ALM

LAB-Wide LAB-Wide
Clock sclr Clock sclr

Before After
Retiming Retiming
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Figure 129.

Figure 130.

intel)

Because the register on the synchronous clear path is shared with other registers, the
register splits on the path to other synchronous clear ports as well.

Retiming Example - Register Splits on the Path to other Synchronous Clear

Ports
d) Before After d)

Retiming Retiming I8

OO OO+
OO

OO

In the following figure, the Hyper-Register at a synchronous clear is in use and cannot
accept another register. The Compiler cannot retime this register for the second time
through the ALM.

Retiming Example - Conflict at Synchronous Clear

OO N O

Conflict

O_O .............. ."_A_ @

Two key architectural components enable movement of ALM registers with a
synchronous clear forward or backward:

e The ability to bypass the ALM register
e A Hyper-Register on the synchronous clear path

To push more registers through, retiming becomes difficult. Performance improvement
is better with asynchronous reset removal than conversion to synchronous resets.
Synchronous clears are often difficult to retime because of their wide broadcast
nature.
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7.2.1.1 Synchronous Resets Summary

Figure 131.

Synchronous clears can limit the amount of retiming. There are two issues with
synchronous clears that cause problems for retiming:

e A short path, usually going directly from the source register to the destination
register without any logic between them. Short paths are not normally a problem,
because their positive slack can be retimed out to longer paths. This makes the
whole design run faster. However, short paths typically connect to long data paths
that require retiming. By retiming many registers along long paths, registers are
pushed down or pulled up this short path. This problem is not significant in normal
logic, but is aggravated because synchronous clears typically have large fan-outs.

e Synchronous clears have large fan-outs. When an aggressive retiming requires
registers to be pushed up or down the synchronous clear paths, the paths can
become cluttered until they can no longer accept more registers. This situation
results in path length imbalances (also referred to as short path / long path), or
no more registers can be pulled from the synchronous clear paths.

Aggressive retiming occurs when a second register must be retimed through the ALM
register.

Aggressive Retiming

ALM Register with ALM Register Bypassed to SCLR HyperRegister Used to
Synchronous Clear Push Register Forward Push ALM Register Backward

SCLR SCLR SCLR

Consider an ALM register with an synchronous clear signal, as shown in the picture on
the left. The middle picture shows that register has been retimed forward and the ALM
register is bypassed. The picture on the right shows the register being retimed
backwards, in which case a register must be pushed up the SCLR path. Stratix 10
devices have a dedicated Hyper-Register on the SCLR path, and the ability to put the
ALM register into bypass mode. This allows you to push and pull this register. If
pushed forward, then you must pull a register down the SCLR path and merge the
two. If pushed back, then you must push a duplicate register up the SCLR path. You
can use both of these options. However, bottlenecks can be created when multiple
registers are pushing and pulling registers up and down the synchronous clear routing.
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Be practical about where to use resets. Control logic mostly requires synchronous
reset. Logic that may not require a synchronous reset helps with timing. Refer to the
following guidelines for dealing with synchronous resets:

When writing new code that needs to run at high speeds, avoid synchronous
resets wherever possible. This is generally in data path logic that either flushes
out while the system is in reset, or its values are ignored when the system comes
out of reset, until new, valid logic filters through.

Control logic often requires a synchronous reset, so there is no avoiding it in that
situation.

For existing logic that runs at high speeds, remove the resets wherever possible.
When you reach a point where you do not understand the logic well enough or
aren’t confident with how it behaves when reset, leave the synchronous reset in.
Only if it becomes a timing issue in your design should you spend time analyzing if
and how the synchronous clear can be removed.

Pipeline the synchronous clear. This does not help if registers must be pushed
back, but can help when registers must be pulled forward into the data path.

Duplicate synchronous clear logic for different hierarchies. This limits the fan-out

of the synchronous clear so that it can be retimed with the local logic. Again, this

may be done only after you determine the existing synchronous clear with a large
fan-out is limiting how the design can be retimed. This is not difficult to do on the
back-end because it does not change the design functionality.

Duplicate synchronous clear for different clock domain and inverted clocks. This
can overcome some retiming restrictions due to boundary or multiple period
requirement issues.

7.2.2 Retiming with Clock Enables

Like synchronous resets, clock enables use a dedicated LAB-wide resource that feeds a
specific function in the ALM register. Similarly, Stratix 10 devices support special logic
that makes retiming logic with clock enables easier. However, wide broadcast control
signals, such as clock enables (and synchronous clears), are difficult to retime.
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Figure 132. ALM Representing Clock Enables

7 Appendices

The following figure shows that the sequence of retiming moves for the asynchronous
clears in the Synchronous Resets and Limitations section apply to the clock enable

control signals.
LAB-Wide
Clock Enable
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In the top circuit, there is a dedicated Hyper-Register on the clock enable path. If the
register needs to be pushed back, it must be split so that another register is pushed
up the clock enable path. Here, the Hyper-Register location can absorb it without
problem. These features allow an ALM register with a clock enable to be easily retimed
backward or forward (middle circuit), to improve timing. A useful feature of a clock
enable is that its logic is usually generated by synchronous signals, so that the clock
enable path can be retimed alongside the data path.
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Figure 133. Retiming Steps and Structure with an ALM register and Associated Hyper-

Registers
~4@§| CLKEN
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[] wr [ ] Used Register
|| Hyper-Register [ Bypassed Register

The figure shows how the clock enable signal clken, which is a typical broadcast type
of control signal, gets retimed. In the top circuit, before retiming, an ALM register is
used. The Hyper-Registers on the clock enable and data paths are also used. In the
middle circuit, the ALM register has been retimed forward into a Hyper-Register
outside the ALM, into the routing fabric. The ALM register is still being used, but it is
not on the data path through the ALM. It is used to hold the previous value of the
register. The clock enable mux now selects between this previous value and the new
value based on the clock enable. The bottom diagram shows when a second register is
retimed forward from the clock enable and data paths into the ALM register. The ALM
register is now used in the path. This process can be repeated and multiple registers
can be iteratively retimed across an enabled ALM register.

The clock enable structure can be divided into the following three categories.

Related Links

Synchronous Resets and Limitations on page 117
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7.2.2.1 Example for Broadcast Control Signals

Broadcast control signals that fan-out to many destinations limit retiming.
Asynchronous clears can limit retiming due to silicon support for certain register
control signals. However, even synchronous signals, such as synchronous clear and
clock enable, can limit retiming when part of a short path/long path critical chain. The
use of a synchronous control signal is not a limiting reason by itself; rather it is the
structure of the circuit combined with the particular placement.

To forward retime a register over a node, there must be a register available on all of
the node’s inputs. This requirement is the same for conventional retiming and Hyper-
Retiming. To retime register A over register B in the following diagram, a register must
be pulled from all inputs, including register C on the clock enable input. Additionally, if
a register is retimed down one side of a branch point, a copy of the register must be
retimed down all sides of a branch point. This requirement is the same for
conventional retiming and Hyper-Retiming.

Figure 134. Retiming through a Clock Enable

. . CLKEN
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LA B

/\ /\ /\

There is a branch point at the clock enable input of register B. The branch point
consists of additional fan-out to other destinations besides the clock enable. To retime
register A over register B, the operation is the same as the previous diagram, but the
presence of the branch point means that a copy of register C must retime along the
other side of the branch point, to register C.

Figure 135. Retiming through a Clock Enable with a Branch Point

e S .
0 0 o

Retiming Example

The following diagrams combine the previous two steps to illustrate the process of a
forward Hyper-Retiming push in the presence of a broadcast clock enable signal or a
branch point.
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Figure 136.

Figure 137.

Figure 138.
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Retiming Example Starting Point
Hyper-Retiming can move a retimed register into the Hyper-Registers.

CLKEN
6 Hyper-Register ‘

il le-e-0l i ile-e

Combinational logic

Each register’s clock enable has one Hyper-Register location at its input. Because of
the placement and routing, the register-to-register path includes three Hyper-Register
locations. A different compilation could include more or fewer Hyper-Register
locations. Additionally, there are registers on the data and clock enable inputs to this
chain that Hyper-Retiming can retime. These registers exist in the RTL, or you can
define them with options described in Pipeline Stages section.

One stage of the input registers retime into a Hyper-Register location between the two
registers. Figure 137 on page 125 shows one part of the Hyper-Retiming forward
push. One of the registers on the clock enable input is retimes over the branch point,
with a copy going to a Hyper-Register location at each clock enable input.

Retiming Example Intermediate Point

Rl =
- i ghe-e-e i i 00

Figure 138 on page 125 shows the positions of the registers in the circuit after Hyper-
Retiming completes the forward push. The two registers at the inputs of the left
register retime to a Hyper-Register location. This diagram is functionally equivalent to
the two previous diagrams. The one Hyper-Register location at the clock enable input
of the second register remains occupied. There are no other Hyper-Register locations
on the clock enable path to the second register, yet there is still one register at the
inputs that could be retimed.

Retiming Example Ending Point

g -

Figure 139 on page 126 shows the register positions Hyper-Retiming could use if not
limited by a short path/long path critical chain. However, because no Hyper-Registers
are available on the right-hand clock enable path, Hyper-Retiming cannot retime the
circuit as shown in the diagram.
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Figure 139.

Retiming Example Limiting condition

CLKEN R Short Path Limits
6 Performance
N N

Because the clock enable path to the second register has no more Hyper-Register
locations available, the Compiler reports this as the short path. Because the register-
to-register path is too long to operate above the reported performance, although
having more available Hyper-Register locations for the retimed registers, the Compiler
reports this as the long path.

The example is intentionally simple to show the structure of a short path/long path
critical chain. In reality, a two-fan-out load is not the critical chain in a circuit.
However, broadcast control signals can become the limiting critical chains with higher
fan-out, and you should take steps to avoid or rewrite the structures.

Related Links
Appendix A: Parameterizable Pipeline Modules on page 115

7.2.3 Resolving Short Paths

Figure 140.

Retiming registers that are close to each other can potentially trigger hold violations at
higher speeds. The following figure shows how a short path limits retiming.

Short Paths Limiting Retiming

In this example, forward retiming pushes a register onto two paths, but one path has
an available register for retiming, while the other does not.

#2

Unusable Slot Due to Hold Routed Longer to

Pick Up Extra Slots

Legend
(O Register already used and not available for retiming

(O Register not used and available for retiming

In the circuit on the left, if register #1 is to be retimed forward, the top path has an
available slot. However, the lower path can’t accept a retimed register because it is too
close to an adjacent register already in use, causing hold time violations. The Compiler
detects these short paths, and routes the registers to longer paths, as shown in the
circuit on the right. This practice ensures that sufficient slots are available for
retiming.
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The following two examples address short paths:

Case 1: A design runs at 400 MHz. Fast Forward compile recommends adding a
pipeline stage to reach 500 MHz and a second pipeline stage to achieve 600 MHz
performance.

The limiting reason is the short path / long path. Add the recommended two-stage
pipelining to reach 600 MHz performance. Then, if the limiting reason is again short
path / long path, the router has reached a limitation in trying to fix the short paths in
the design. However, at this point you may have already reached your target
performance, or this is no longer the critical path.

Case 2: A design works at 400 MHz. Fast Forward compile does not make any
recommendations to add pipeline stages.

If the short path / long path is the immediate limiting reason for retiming, the router
has reached a limitation in trying to fix the short paths. Adding pipeline stages to the
reported path does not help. You must optimize the design.

Retiming registers that are close to each other can potentially trigger hold violations at
higher speeds. The Compiler reports this situation in the retiming report under Path
Info. The Compiler also reports short paths if enough Hyper-Registers are not
available. When nodes involve both a short path and a long path, adding pipeline
registers to both paths helps with retiming.
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